In this work lasers with micro-, nano-, pico- and femtosecond pulse durations were used to clean atmospheric corrosion products from the fragments of a 19th-century lead outdoor sculpture. The state of the surface was studied by optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. It was shown that for all lasers used there is no self-limiting cleaning effect, and the metal damage threshold is lower than the corrosion removal threshold. Using the XPS method, it has been demonstrated that the effect of turning a metallic lead surface blue after irradiation is associated with an interference effect in the PbO film. Raman spectroscopy indicated no phase changes in the corrosion layer after laser cleaning with 8 ns, 75 ps and 100 fs pulses, which makes these lasers useful for the layer-by-layer cleaning of archaeological objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.