Nanofluids, which are suspensions of nanoparticles dispersed in a base fluid, have remarkable potential in a wide range of applications. However, the stability of the nanofluid has remained a challenge and a matter of concern. A lot of research, development work and reviews have been conducted on the preparation and stability of nanofluids. In this study, calculation of solubility parameter values using a molecular modelling software were performed to aid the screening of nanoparticles that are compatible with the base fluid. The solubility parameter is the numerical representation of the solvency behavior between two molecules. A molecular modelling software was used to study the solubility parameter values of nanoparticles to determine their compatibility with the base fluids. To validate the model, the computed values were compared against published literature and it was shown that the model has achieved more than 95% accuracy. The simulations were verified with experimental work with varying concentration of nanoparticles in brine solution and deionized water. Experimental results showed that zinc oxide nanoparticles demonstrated the best compatibility with the base fluid, which tally with the simulation.
Summary Polymer gel system has been identified as having the potential for blocking and diverting water flow. However, the current polymer reported an inability to maintain its mechanical strength, limited penetration depth, and instability in reservoir conditions of high temperature and high pressure. A distinctive bentonite nanomer clay (PGV)/acrylamide (AM)-co-2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) preformed particle gel with poly(ethylene glycol-b-tetramethylene oxide) (PEGTMO) coating to control the swelling kinetics is formulated. The in-house formulated gel’s ability to block and divert water flow in a porous medium is studied. The formation recipe of the gel was achieved by numerous swelling tests as induced by brine solution under reservoir conditions. Through the swelling tests, the long-term thermal stability of the gel solution was demonstrated. The incorporation of PGV clay particles improves the swelling and mechanical properties of the gel. Premature swelling can be avoided with PEGTMO coating as it slows the swelling rate over a 10-minute period, which gives the advantage of controlling the swelling before reaching the intended site of action during coreflood experiments. The rheological behavior of the hydrogel features rubber-like mechanical behavior with a viscosity value of 1.17 cp, which displayed water-like characteristics. Further, significant permeability reduction of large fractures is demonstrated by the coreflooding experiment with a calculated result of 96.2%. This formulated gel could offer the solution as a blocking agent in void space channels containing reservoirs that leads to a reduction of water cut due to thief zones.
Nanofluid contains nanoparticles that enhanced the property of the base fluid. However, the separating layer between the nanoparticles and base fluids may interfere the nanofluids performance. Studies have been made that surface modification of nanoparticles may improve the dispersion of nanoparticles in base fluids. This paper reports the study of the colloidal stability of surface modified nanoparticles using a polymer and an amino-silane. The nanoparticles were prepared by one-step and two-step methods using cobalt iron oxide nanoparticles with brine solution and deionized water as the base fluids. Functionalization by surface modification of the nanoparticles to enhance the nanofluids stability was carried out using (3-aminopropyl) triethoxysilane (APTES) and polyvinyl alcohol (PVA). Characterization using Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscope (FESEM) and X-ray Powder Diffraction (XRD) were performed to study the functionality and morphology of the synthesized nanoparticles. The extra IR peaks such as Si-O-Si at 1063 cm-1 for CoFe2O4-APTES and C=O at 1742 cm-1 for CoFe2O4-PVA showed that there are additional elements in the cobalt ferrite due to functionalization. The size of synthesized CoFe2O4-APTES ranged between 15.99 nm to 26.89 nm while CoFe2O4-PVA is from 25.70 nm to 54.16 nm. The stability of the nanofluid were determined via zeta potential measurements. CoFe2O4-APTES nanofluid has zeta potential of -35.7 mV compared to CoFe2O4-PVA at -15.5 mV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.