In this paper, we describe Riemann-integrable functions with the help of a new class of uniform functions. This description allows us to uncover the "countable" nature of the relation between the space of Riemann-integrable functions and the space of continuous functions. The argumentation is performed for any given topological space T with limited Radon measure µ the support of which coincides with T .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.