Here a simple, reproducible, and versatile method is described for manufacturing protein and ligand chips. The photo-induced copolymerization of acrylamide-based gel monomers with different probes (oligonucleotides, DNA, proteins, and low-molecular ligands) modified by the introduction of methacrylic groups takes place in drops on a glass or silicone surface. All probes are uniformly and chemically fixed with a high yield within the whole volume of hydrogel semispherical chip elements that are chemically attached to the surface. Purified enzymes, antibodies, antigens, and other proteins, as well as complex protein mixtures such as cell lysates, were immobilized on a chip. Avidin- and oligohistidine-tagged proteins can be immobilized within biotin- and Ni-nitrilotriacetic acid-modified gel elements. Most gel-immobilized proteins maintain their biological properties for at least six months. Fluorescence and chemiluminescence microscopy were used as efficient methods for the quantitative analysis of the microchips. Direct on-chip matrix-assisted laser desorption ionization-time of flight mass spectrometry was used for the qualitative identification of interacting molecules and to analyze tryptic peptides after the digestion of proteins in individual gel elements. We also demonstrate other useful properties of protein microchips and their application to proteomics and diagnostics.
Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has been applied to increase the informational output from DNA sequence analysis. It has been used to analyze DNA by hybridization with microarrays of gel-immobilized oligonucleotides extended with stacked 5mers. In model experiments, a 28 nt long DNA fragment was hybridized with 10 immobilized, overlapping 8mers. Then, in a second round of hybridization DNA-8mer duplexes were hybridized with a mixture of 10 5mers. The stability of the 5mer complex with DNA was increased to raise the melting temperature of the duplex by 10-15 degrees C as a result of stacking interaction with 8mers. Contiguous 13 bp duplexes containing an internal break were formed. MALDI MS identified one or, in some cases, two 5mers contiguously stacked to each DNA-8mer duplex formed on the microchip. Incorporating a mass label into 5mers optimized MALDI MS monitoring. This procedure enabled us to reconstitute the sequence of a model DNA fragment and identify polymorphic nucleotides. The application of MALDI MS identification of contiguously stacked 5mers to increase the length of DNA for sequence analysis is discussed.
Oligonucleotide–peptide conjugates (OPCs) are a promising class of biologically active compounds with proven potential for improving nucleic acid therapeutics. OPCs are commonly recognized as an efficient instrument to enhance the cellular delivery of therapeutic nucleic acids. In addition to this application field, OPCs have an as yet unexplored potential for the post-SELEX optimization of DNA aptamers. In this paper, we report the preparation of designer thrombin aptamer OPCs with peptide side chains anchored to a particular thymidine residue of the aptamer. The current conjugation strategy utilizes unmodified short peptides and support-bound protected oligonucleotides with activated carboxyl functionality at the T3 thymine nucleobase. The respective modification of the oligonucleotide strand was implemented using N3-derivatized thymidine phosphoramidite. Aptamer OPCs retained the G-quadruplex architecture of the parent DNA structure and showed minor to moderate stabilization. In a series of five OPCs, conjugates bearing T3–Ser–Phe–Asn (SFN) or T3–Tyr–Trp–Asn (YWN) side chains exhibited considerably improved anticoagulant characteristics. Molecular dynamics studies of the aptamer OPC complexes with thrombin revealed the roles of the amino acid nature and sequence in the peptide subunit in modulating the anticoagulant activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.