The medical device industry is undergoing rapid change as innovation accelerates, new business models emerge, and artificial intelligence and the Internet of Things create disruptive possibilities in health care. On the innovation front, global annual patent applications related to medical devices have tripled in 10 years, and technology cycle times have halved in just 5 years. Connectivity has explodedby 2021, the world will have more than three times as many smart connected devices as people-and more and more medical devices and processes contain integrated sensors. In this article, we report on recent McKinsey (McKinsey & Company, New York, New York) work to map start-ups and trends shaping the future of medical imaging. We identify technology clusters with prospects of future growth, look at some of their cutting-edge practices, and consider what the implications may be for our specialty.
Object. The purpose of this work is to reveal the possibilities of low-field 23Na MRI. It was supposed to obtain images of various human organs using the 3D-scanning method, and to do this with minimal hardware modifications of a typical clinical 0,5T scanner. Materials and methods. The proprietary receiving coils, originally intended for registering proton signals (21,1 MHz), were transformed to transceiver ones and tuned to the sodium Larmor frequency of 5,6 MHz. The scanning was carried out by the 3D-gradient echo method with the parameters: TR/TE=44,7/12 ms, FA=45° and isotropic resolution of 6 mm. To increase SNR, apodization in k-space was applied during data processing. Results. 23Na MRI (including volumetric reconstructions) of several human organs – head, breast, heart, joints were obtained with SNR up to 15. Discussion. When developing low-field 23Na MRI, it is advisable to focus on recording only the T2long component (>15 ms). In this case, it is possible to narrow the receiver bandwidth as much as possible and thereby minimize noise. In addition, the requirements for the transmission path are reduced. As a result, for debugging MRI methods, the equipment of a typical clinical scanner, which is supplemented by coils tuned to the sodium NMR frequency only, can be used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.