In dissipationless linear media, spatial disorder induces Anderson localization of matter, light, and sound waves. The addition of nonlinearity causes interaction between the eigenmodes, which results in a slow wave diffusion. We go beyond the dissipationless limit of Anderson arrays and consider nonlinear disordered systems that are subjected to the dissipative losses and energy pumping. We show that the Anderson modes of the disordered Ginsburg-Landau lattice possess specific excitation thresholds with respect to the pumping strength. When pumping is increased above the threshold for the band-edge modes, the lattice dynamics yields an attractor in the form of a stable multi-peak pattern. The Anderson attractor is the result of a joint action by the pumping-induced mode excitation, nonlinearity-induced mode interactions, and dissipative stabilization. The regimes of Anderson attractors can be potentially realized with polariton condensates lattices, active waveguide or cavity-QED arrays.
We study collective dynamics of interacting centers of exciton-polariton condensation in presence of spatial inhomogeneity, as modeled by diatomic active oscillator lattices. The mode formalism is developed and employed to derive existence and stability criteria of plane wave solutions. It is demonstrated that k0 = 0 wave number mode with the binary elementary cell on a diatomic lattice possesses superior existence and stability properties. Decreasing net on-site losses (balance of dissipation and pumping) or conservative nonlinearity favors multistability of modes, while increasing frequency mismatch between adjacent oscillators detriments it. On the other hand, spatial inhomogeneity may recover stability of modes at high nonlinearities. Entering the region where all single-mode solutions are unstable we discover subsequent transitions between localized quasiperiodic, chaotic and global chaotic dynamics in the mode space, as nonlinearity increases. Importantly, the last transition evokes the loss of synchronization. These effects may determine lasing dynamics of interacting exciton-polariton condensation centers. arXiv:1407.7067v1 [nlin.CD]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.