During geomagnetic disturbances when the ring current interacts intensely with the plasmasphere, the plasma of this region undergoes a strong heating due to an ion cyclotron instability. This is followed by the transfer of heat along geomagnetic field lines from the heating region to the ionosphere. One of the results of this process is the formation of a non isothermal region (in which T, >3.4 Tg at ionospheric heights) caused by a rapid cooling the H* ions due to their resonant charge exchange with neutral hydrogen. Heat transfer from the top of the flux tube to the ionosphere is investigated using a hydrodynamic model for the ionosphere-plasmasphere coupling. Field-aligned currents, present in the topside ionosphere, are often accompanied by ion sound turbulence. The turbulence scatters electrons, increasing the total electron collision frequency through wave-particle effects. The influence of wave-particle interactions introduces an anomalous component to the total collision frequency, which modifies substantially the heat conduction coefficient of the plasma. As a result, the plasma is heated more intensely above than below this region of ion sound turbulence. ß Young, D. T., et al., Wave-particle interactions near He + observed on GEOS 1 and 2, I, Propagation of ion cyclotron waves in He + -rich plasma, J. Geophys. Res., 86, 6755, 1981.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.