The objective of this study was to evaluate biochemical factors affecting Warner-Bratzler shear force (WBSF) and East Asian consumers’ eating preferences of 6 different beef shank cuts cooked by moist heat. Six different beef shank muscles were collected from 12 USDA Choice beef carcasses (N = 72). Shank cuts from the left sides were cooked with moist heat and used for East Asian consumer sensory evaluation and WBSF, and shank cuts from the right sides were left uncooked and used for biochemical analysis and visual panels utilizing the same group of consumers. A correlation analysis was conducted to determine the driving factors that contributed to WBSF and East Asian consumers’ overall liking for beef shanks. Biceps brachii and flexor digitorum superficialis-pelvic received the greatest sensory overall liking, with deep digital flexor from the foreshank having the lowest scores (P < 0.01). Deep digital flexor from the foreshank had the greatest WBSF value, most cooked collagen content, and greatest insoluble collagen percentage as well as the greatest raw and cooked pyridinoline (PYD) densities among all the beef shank cuts (P < 0.05). For visual overall liking, shank cuts at approximately 700–750 g such as biceps brachii and extensor carpi radialis received the highest ratings (P < 0.01), and consumers indicated that there was no visual difference in surface color among the shank cuts (P > 0.10). Correlation analysis showed that cooked collagen content and insoluble collagen percentage as well as raw PYD densities had positive correlations with WBSF (P < 0.05) and negative correlations with consumer overall liking (P < 0.01). Surprisingly, collagen content from uncooked shank cuts did not have a direct relationship with consumers’ overall liking nor with WBSF. The results demonstrated that raw PYD density may be a great indicator for cooked beef tenderness in beef cuts with a high concentration of connective tissue prepared with moist heat cookery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.