Chitosan (Chi) is a natural biodegradable cationic polymer with remarkable potency as a vehicle for drug or vaccine delivery. Chi possesses multiple groups, which can be used both for Chi derivatization and for particle formation. The aim of this work was to produce stable nanosized range Chi gels (nanogels, NGs) with different charge and to study the driving forces of complex formation between Chi NGs and proteins or peptides. Positively charged NGs of 150 nm in diameter were prepared from hexanoyl chitosan (HC) by the ionotropic gelation method while negatively charged NGs of 190 nm were obtained from succinoyl Chi (SC) by a Ca 2+ coacervation approach. NGs were loaded with a panel of proteins or peptides with different weights and charges. We show that NGs preferentially formed complexes with oppositely charged molecules, especially peptides, as was demonstrated by gel-electrophoresis, confocal microscopy and HPLC. Complex formation was accompanied by a change in zeta-potential and decrease in size. We concluded that complex formation between Chi NGs and peptide/proteins is mediated mostly by electrostatic interactions.
Chitosan (Chi) is a biodegradable nontoxic polycation with multiple reactive groups that is easily used to obtain derivatives with a desired charge and hydrophobic properties. The aim of this work was to study the intracellular traffic of positively charged hexanoyl-chitosan (HC) or HC-based nanoparticles (HCNPs) and negatively charged succinoyl-chitosan (SC) and SCNPs in epithelial and macrophage cell lines. By using flow cytometry we demonstrated that positively charged HC adhered to cell membranes quicker and more efficiently than negatively charged SC or NPs. However confocal studies showed that SC and SCNPs penetrated cells much more efficiently than HC while HCNPs did not enter the epithelial cells. Macrophages also phagocyted better negatively charged material but were able to engulf both HC and HCNPs. Upon entering the cells, SC and SCNPs were co-localized with endosomes and lysosomes while HC was found in mitochondria and, to a lesser extent, in lysosomes of epithelial cells. Macrophages, RAW264.7, more efficiently transported all Chi samples to the lysosomal compartment while some positively charged material was still found in mitochondria. Incubation of Chi derivatives and ChiNPs at pH specific to mitochondria (8.0) and lysosomes (4.5) demonstrated the neutralization of Chi charge. We concluded that epithelial cells and, to a lesser extent, macrophages sort charged material to the organelles neutralizing Chi charge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.