We have constructed a micromagnetic model to study the exchange coupling between Co (a ferromagnet) and γ-Fe50Mn50 (an antiferromagnet) in a thin film bilayer with (111) texturing. The intention is to compare experimental results with a micromagnetic calculation that is sufficiently sophisticated to realistically model this polycrystalline ferromagnet/antiferromagnet system. The antiferromagnet thickness dependences of exchange bias and enhanced coercivity were simulated at 10 and 300K and comparison to experiments revealed reasonable agreement. We also examined the antiferromagnet grain size dependence of exchange bias, owing to its relation to the key issue of uncompensated spin density. Simulation finds a linear relationship between exchange bias and inverse grain size for both thermally stable and thermally fluctuating antiferromagnetic grains, but with different intercepts. Experiment also finds a linear dependence, but the extrapolation to infinite diameter reveals an unexpected negative exchange bias. Our results demonstrate the applicability of this form of micromagnetic modeling for multiple phenomena associated with the exchange bias effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.