This work identifies the cardiac substructures where excess dose is most associated with early mortality. The right atrium, origin of the right coronary artery, and the ascending aorta are identified with a maximum equivalent dose in 2-Gy fractions of 23 Gy presented as a dose limit for future studies. Purpose: For patients with lung cancer treated with radiation therapy, a dose to the heart is associated with excess mortality; however, it is often not feasible to spare the whole heart. Our aim is to define cardiac substructures and dose thresholds that optimally reduce early mortality. Methods and Materials: Fourteen cardiac substructures were delineated on 5 template patients with representative anatomies. One thousand one hundred sixty-one patients with non-small cell lung cancer were registered nonrigidly to these 5 template anatomies, and their radiation therapy doses were mapped. Mean and maximum dose to each substructure were extracted, and the means were evaluated as input to prediction models. The cohort was bootstrapped into 2 variable reduction techniques: elastic net least absolute shrinkage and selection operator and the random survival forest model. Each method was optimized to extract variables contributing most to overall survival, and model coefficients were evaluated to select these substructures. The most important variables common to both models were selected and evaluated in multivariable Cox-proportional hazard models. A threshold dose was defined, and Kaplan-Meier survival curves plotted.
Background and purpose: For lung cancer patients treated with radiotherapy, radiation dose to the heart has been associated with overall survival, with volumetric dose statistics widely presented. However, critical cardiac structures are present on the hearts surface, where this approach may be sub-optimal. In this work we present a methodology for creating cardiac surface dose maps and identify regions where excess dose is associated with in worse overall survival. Material and methods: A modified cylindrical coordinate system was implemented to map the cardiac surface dose for lung cancer patients. Validation was performed by mapping the cardiac chambers for 55 patients, fitting a point spread function (PSF) to the blurred edge. To account for this uncertainty, dose maps were blurred by a 2D-Gaussian with width described by the PSF. Permutation testing identified regions where excess dose was associated with worse patient survival. The 99th percentile of the max t-value then defined a cardiac surface region to extract dose, from each patient, to be analysed in a multivariable cox-proportional hazards survival model. Results: Cardiac surface maps were created for 648 lung cancer patients. Cardiac surface dose maps were blurred with a 2D-Gaussian filter of size σ φ = 4.3°and σ y = 1.3units to account for mapping uncertainties. Permutation testing identified significant differences across the surface of the right atria, p < 0.001, at all timepoints. The median dose to the region defined by the 99th percentile of the maximum t-value was 18.5 Gy. Multivariable analysis showed the dose to this region was significantly associated with survival, hazard ratio 1.01 Gy −1 , p = 0.03, controlling for confounding variables. Conclusions: Cardiac surface mapping was successfully implemented and identified a region where excess dose was associated with worse patient survival. This region extended over the right atria, potentially suggesting an interaction with the hearts electrical conduction system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.