A modified version of MCNP5 has been developed to treat continuous-energy proton transport. This work is summarised in companion papers by Hughes et al. and Bull et al. (in these proceedings). An intrinsic part of this development effort has involved testing, verification and validation of a capability for simulating proton radiographs. This paper presents the results of calculations simulating various different test objects and the effects of alternative physics models. The significant physics processes include elastic scattering, multiple coulomb scattering, collisional energy-loss and straggling, magnetic fields and attenuation owing to nuclear interactions. Comparisons with experimental data are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.