Accurate modeling of the impact of aerosols on climate requires a detailed understanding of the vertical distribution of aerosols. The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) provides continuous high-resolution vertical profiles of aerosol properties on a near-global scale. Here the CALIPSO Vertical Feature Mask is used to document the three-dimensional (3D) frequency-of-occurrence distribution of aerosols over a broad region of the Atlantic Ocean, Africa, Europe, and the Americas. The 3D distributions illustrate the seasonal cycle in the zonal and meridional variability of the vertical profiles of mineral dust, biomass-burning smoke, polluted dust (external mixture of dust and smoke), and polluted continental aerosol, and also of their emissions sources and transport pathways. Four aerosol domains stand out in the product: dust over North Africa and the Middle East and smoke over southern Africa and South America. The transport pathways of African dust and smoke over the Atlantic are evident. The intertropical convergence zone (ITCZ) plays a clear role in limiting the southward transport of North African dust and northward transport of South African smoke. Dust and smoke are mixed in the ITCZ and consequently the highest probability of polluted dust is found there, even though the probabilities of dust and smoke in this region are relatively low. The mixing of dust and pollution has significant implications for cloud microphysical processes over a broad region of the Atlantic.
It has previously been shown that misfolded mutant Akita proinsulin in the endoplasmic reticulum engages directly in protein complexes either with nonmutant proinsulin or with "hProCpepGFP" (human proinsulin bearing emerald-GFP within the C-peptide), impairing the trafficking of these "bystander" proinsulin molecules (Liu, M., Hodish, I., Rhodes, C. J., and Arvan, P. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 15841-15846). Herein, we generated transgenic mice, which, in addition to expressing endogenous proinsulin, exhibit -cellspecific expression of hProCpepGFP via the Ins1 promoter. In these mice, hProCpepGFP protein levels are physiologically regulated, and hProCpepGFP is packaged and processed to CpepGFP that is co-stored in -secretory granules. Visualization of CpepGFP fluorescence provides a quantifiable measure of pancreatic islet insulin content that can be followed in live animals in states of health and disease. We examined loss of pancreatic insulin in hProCpepGFP transgenic mice mated to Akita mice that develop neonatal diabetes because of the expression of misfolded proinsulin. Loss of bystander insulin in Akita animals is detected initially as a block in CpepGFP/insulin production with intracellular accumulation of the precursor, followed ultimately by loss of pancreatic -cells. The data support that misfolded proinsulin perturbs bystander proinsulin in the endoplasmic reticulum, leading to -cell failure.During the progression of diabetes mellitus, the endocrine pancreas encounters difficulty in meeting insulin requirements (1); -cell dysfunction is recognized as a major contributor to the disease (2-5). One element of -cell dysfunction is ER 3 stress (6 -11) with ER accumulation of misfolded protein (12), especially proinsulin (13, 14). -Cells ordinarily maintain a high level of proinsulin production with finite additional capacity before the biosynthetic apparatus is taxed to the point of ER stress (15). Chronically increased secretory demand, either in animal models or in humans, results in morphological depletion of -secretory granules with a compensatory increase in apparent secretory pathway activity, including distention of the ER (16 -18). These conditions may favor additional proinsulin misfolding (19).The causality between misfolded proinsulin and -cell failure is unequivocally established in congenital diabetes caused by preproinsulin coding sequence mutations, in which diabetes is inherited in an autosomal dominant manner (20 -24). Insulin haploinsufficiency cannot account for the diabetes (25), yet despite three normal proinsulin alleles, both Akita and Munich mice each develop overt diabetes by expressing from a single allele a mutant proinsulin with replacement of one Cys residue that disrupts one of the three proinsulin disulfide bonds (26,27). In addition to being retained in the ER, it has been suggested that misfolded proinsulin may impair normal insulin production via physical interactions between mutant and wild-type proinsulin gene products (26). Indeed, we have direct...
The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed.
Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution.
Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500–1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower liquid water paths there. Thus, larger scale forcings that impact cloud macrophysical properties, as well as enhanced aerosol particles, are important in determining cloud droplet size and cloud albedo.
Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, some of which may initiate drizzle, contain the largest aerosol particles. Geometric mean diameters of droplet residual particles were larger than those of the below-cloud and above cloud distributions. However, a wide range of particle sizes can act as droplet nuclei in these stratocumulus clouds. A detailed LES microphysical model was used to show that this can occur without invoking differences in chemical composition of cloud-nucleating particles
Abstract.We have recently investigated large-scale covariability between aerosol and precipitation and other meteorological variables in the West African Monsoon (WAM) region using long term satellite observations and reanalysis data. In this study we compared the observational results to a global model simulation including only direct radiative forcing of black carbon (BC). From both observations and model simulations we found that in boreal cold seasons anomalously high African aerosols are associated with significant reductions in cloud amount, cloud top height, and surface precipitation. These results suggest that the observed precipitation reduction in the WAM region is caused by radiative effect of BC. The result also suggests that the BC effect on precipitation is nonlinear.
Nerve grafts are often required to replace tissue damaged by disease, surgery, or extensive trauma. Limitations such as graft availability, donor site morbidity, and immune rejection have led investigators to develop strategies to engineer nerve tissue. The goal of this study was to fabricate a scaffoldless three-dimensional (3D) nerve construct using a co-culture of fetal nerve cells with a fibroblast monolayer and allow the co-culture to remodel into a 3D construct with an external fibroblast layer and an internal core of interconnected neuronal cells. Primary fibroblasts were seeded on laminin-coated plates and allowed to form a confluent monolayer. Neural cells isolated from E-15 spinal cords were seeded on top of the fibroblast monolayer and allowed to form a networked monolayer across the monolayer of fibroblasts. Media shifts initiated contraction of the fibroblast monolayer and a remodeling of the co-culture into a 3D construct held statically in place by the two constraint pins. Immunohisto-chemistry using S100 (Schwann cell), β3-tubulin, DAPI, and collagen I indicated an inner core of nerve cells surrounded by an external layer of fibroblasts. Conduction velocities of the 3D nerve and control (fibroblast-only) constructs were measured in vitro and compared to in vivo measures of neonatal sciatic nerve. The conduction velocities of the nerve constructs were comparable to 24-d-old neonatal nerve. The presence of Schwann cells and the ability to conduct neuronal signals in vitro suggest the scaffoldless 3D nerve constructs will be a viable option for nerve repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.