Chemotherapy is the main strategy for the treatment of cancer. However, the main problem limiting the success of chemotherapy is the development of multidrug resistance. The resistance can be intrinsic or acquired. The resistance phenotype is associated with the tumor cells that gain a cross-resistance to a large range of drugs that are structurally and functionally different. Multidrug resistance arises via many unrelated mechanisms, such as overexpression of energy-dependent efflux proteins, decrease in uptake of the agents, increase or alteration in drug targets, modification of cell cycle checkpoints, inactivation of the agents, compartmentalization of the agents, inhibition of apoptosis and aberrant bioactive sphingolipid metabolism. Exact elucidation of resistance mechanisms and molecular and biochemical approaches to overcome multidrug resistance have been a major goal in cancer research. This review comprises the mechanisms guiding multidrug resistance in cancer chemotherapy and also touches on approaches for reversing the resistance.
Sphingolipids are a class of lipids that have important functions in a variety of cellular processes such as, differentiation, proliferation, senescence, apoptosis and chemotherapeutic resistance. The most widely studied bioactive shingolipids include ceramides, dihydroceramide (dhCer), ceramide-1-phosphate (C1P), glucosyl-ceramide (GluCer), sphingosine and sphingosine-1-phosphate (S1P). Although the length of fatty acid chain affects the physiological role, ceramides and sphingosine are known to induce apoptosis whereas C1P, S1P and GluCer induce proliferation of cells, which causes the development of chemoresistance. Previous studies have implicated the significance of bioactive shingolipids in oncogenesis, cancer progression and drug-and radiation-resistance. Therefore, targeting the elements of sphingolipid metabolism appears important for the development of novel therapeutics or to increase the effectiveness of the current treatment strategies. Some approaches involve the development of synthetic ceramide analogs, small molecule inhibitors of enzymes such as sphingosine kinase, acid ceramidase or ceramide synthase that catalyze ceramide catabolism or its conversion to various molecular species and S1P receptor antagonists. These approaches mainly aim to up-regulate the levels of apoptotic shingolipids while the proliferative ones are down-regulated, or to directly deliver cytotoxic sphingolipids like short-chain ceramide analogs to tumor cells. It is suggested that a combination therapy with conventional cytotoxic approaches while preventing the conversion of ceramide to S1P and consequently increasing the ceramide levels would be more beneficial. This review compiles the current knowledge about sphingolipids, and mainly focuses on novel agents modulating sphingolipid pathways that represent recent therapeutic strategies for the treatment of cancer.
Sphingolipids are a class of lipids that have important functions in a variety of cellular processes such as, differentiation, proliferation, senescence, apoptosis and chemotherapeutic resistance. The most widely studied bioactive shingolipids include ceramides, dihydroceramide (dhCer), ceramide-1-phosphate (C1P), glucosyl-ceramide (GluCer), sphingosine and sphingosine-1-phosphate (S1P). Although the length of fatty acid chain affects the physiological role, ceramides and sphingosine are known to induce apoptosis whereas C1P, S1P and GluCer induce proliferation of cells, which causes the development of chemoresistance. Previous studies have implicated the significance of bioactive shingolipids in oncogenesis, cancer progression and drug-and radiation-resistance. Therefore, targeting the elements of sphingolipid metabolism appears important for the development of novel therapeutics or to increase the effectiveness of the current treatment strategies. Some approaches involve the development of synthetic ceramide analogs, small molecule inhibitors of enzymes such as sphingosine kinase, acid ceramidase or ceramide synthase that catalyze ceramide catabolism or its conversion to various molecular species and S1P receptor antagonists. These approaches mainly aim to up-regulate the levels of apoptotic shingolipids while the proliferative ones are down-regulated, or to directly deliver cytotoxic sphingolipids like short-chain ceramide analogs to tumor cells. It is suggested that a combination therapy with conventional cytotoxic approaches while preventing the conversion of ceramide to S1P and consequently increasing the ceramide levels would be more beneficial. This review compiles the current knowledge about sphingolipids, and mainly focuses on novel agents modulating sphingolipid pathways that represent recent therapeutic strategies for the treatment of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.