A dielectric barrier Xe discharge lamp producing vacuum-ultraviolet radiation with high efficiency was investigated theoretically and experimentally. The cylindrical glass body of the lamp is equipped with thin strips of metal electrodes applied to diametrically opposite sides of the outer surface. We performed a simulation of discharge plasma properties based on one-dimensional fluid dynamics and also assessed the lamp characteristics experimentally. Simulation and experimental results are analysed and compared in terms of voltage and current characteristics, power input and discharge efficiency. Using the proposed lamp geometry and fast rise-time short square pulses of the driving voltage, an intrinsic discharge efficiency around 56% was predicted by simulation, and more than 60 lm W−1 lamp efficacy (for radiation converted into visible green light by phosphor coating) was demonstrated experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.