This paper discusses the economic analysis and environmental impacts of integrating a photovoltaic (PV) array into diesel-electric power systems for remote villages. MATLAB Simulink is used to match the load with the demand and apportion the electrical production between the PV and diesel-electric generator. The economic part of the model calculates the fuel consumed, the kilowatthours obtained per gallon of fuel supplied, and the total cost of fuel. The environmental part of the model calculates the 2 , particulate matter (PM), and the x emitted to the atmosphere. Simulations based on an actual system in the remote Alaskan community of Lime Village were performed for three cases: 1) diesel only; 2) diesel-battery; and 3) PV with diesel-battery using a one-year time period. The simulation results were utilized to calculate the energy payback, the simple payback time for the PV module, and the avoided costs of 2 , x , and PM. Post-simulation analysis includes the comparison of results with those predicted by Hybrid Optimization Model for Electric Renewables (HOMER). The life-cycle cost (LCC) and air emissions results of our Simulink model were comparable to those predicted by HOMER.Index Terms-Energy payback period, greenhouse emissions, hybrid power system, photovoltaic (PV) array, power system monitoring, remote terminal unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.