Abstract-This paper develops a notion of approximation for a class of stochastic hybrid systems that includes, as special cases, both jump linear stochastic systems and linear stochastic hybrid automata. Our approximation framework is based on the recently developed notion of the so-called stochastic simulation functions. These Lyapunov-like functions can be used to rigorously quantify the distance or error between a system and its approximate abstraction. For the class of jump linear stochastic systems and linear stochastic hybrid automata, we show that the computation of stochastic simulation functions can be cast as a tractable linear matrix inequality problem. This enables us to compute the modeling error incurred by abstracting some of the continuous dynamics, or by neglecting the influence of stochastic noise, or even the influence of stochastic discrete jumps.
Abstract. Testing is an important tool for validation of the system design and its implementation. Model-based test generation allows to systematically ascertain whether the system meets its design requirements, particularly the safety and correctness requirements of the system. In this paper, we develop a framework for generating tests from hybrid systems' models. The core idea of the framework is to develop a notion of robust test, where one nominal test can be guaranteed to yield the same qualitative behavior with any other test that is close to it. Our approach offers three distinct advantages. 1) It allows for computing and formally quantifying the robustness of some properties, 2) it establishes a method to quantify the test coverage for every test case, and 3) the procedure is parallelizable and therefore, very scalable. We demonstrate our framework by generating tests for a navigation benchmark application.
Gene regulatory networks capture the interactions between genes and other cell substances, resulting from the fundamental biological process of transcription and translation. In some applications, the topology of the regulatory network is not known, and has to be inferred from experimental data. The experimental data consist of expression levels of the genes, which are typically measured as mRNA concentrations in micro-array experiments. In a so called genetic perturbation experiment, small perturbations are applied to equilibrium states and the resulting changes in expression activity are measured. This paper develops novel algorithms that identify a sparse and stable genetic network that explains data obtained from noisy genetic perturbation experiments. Our identification algorithm is based on convex relaxations of the sparsity and stability constraints and can also incorporate a variety of prior knowledge of the network structure. Such knowledge can be either qualitative, specifying positive, negative or no interactions between genes, or quantitative, specifying a range of interaction strengths. Our approach is applied to both synthetic and experimental data, obtained for the SOS pathway in Escherichia coli, and the results show that the stability specification not only ensures consistency with the steady-state assumptions, but also significantly increases the identification performance. Since the method is based on convex optimization, it can be efficiently applied to large scale networks.
Untethered robotic microswimmers are very promising to significantly improve various types of minimally invasive surgeries by offering high accuracy at extremely small scales. A prime example is drug delivery, for which a large number of microswimmers is required to deliver sufficient dosages to target sites. For this reason, the controllability of groups of microswimmers is essential. In this paper, we demonstrate simultaneous control of multiple geometrically similar but magnetically different microswimmers using a single global rotating magnetic field. By exploiting the differences in their magnetic properties, we triggered different swimming behaviors from the microswimmers by controlling the frequency and the strength of the global field, for example, one swim and the other does not while exposed to the same control input. Our results show that the balance between the applied magnetic torque and the hydrodynamic torque can be exploited for simultaneous control of two microswimmers to swim in opposite directions, with different velocities, and with similar velocities. This work will serve to establish important concepts for future developments of control systems to manipulate multiple magnetically actuated microswimmers and a step towards using swarms of microswimmers as viable workforces for complex operations.
Gene regulatory networks capture interactions between genes and other cell substances, resulting in various models for the fundamental biological process of transcription and translation. The expression levels of the genes are typically measured as mRNA concentration in micro-array experiments. In a so-called genetic perturbation experiment, small perturbations are applied to equilibrium states and the resulting changes in expression activity are measured. One of the most important problems in systems biology is to use these data to identify the interaction pattern between genes in a regulatory network, especially in a large scale network. The authors develop a novel algorithm for identifying the smallest genetic network that explains genetic perturbation experimental data. By construction, our identification algorithm is able to incorporate and respect a priori knowledge known about the network structure. A priori biological knowledge is typically qualitative, encoding whether one gene affects another gene or not, or whether the effect is positive or negative. The method is based on a convex programming relaxation of the combinatorially hard problem of L 0 minimisation. The authors apply the proposed method to the identification of a subnetwork of the SOS pathway in Escherichia coli, the segmentation polarity network in Drosophila melanogaster, and an artificial network for measuring the performance of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.