The study focuses on the optical properties of the CZTS multicomponent semiconductor absorber with 3 % “production” impurities of Cd, Na, O within the framework of the density functional theory using the generalized gradient approximation and the SCAPS program, as well as investigates their influence on the performance and efficiency of CZTS-solar cells. The results showed that the introduction of Cd, Na, O impurities would lead to a decrease in the intensity of the absorption bands at 2.06 eV and 2.55 eV. The density of states CZTS: (Cd, Na, O) was determined from first principles, and it was revealed that impurities of Cd and O atoms would lead to a decrease in the band gap (to 0.9 eV and 0.79 eV), and an increase in Na impurity absorption (1.2 eV). It was also found that a decrease in the band gap led to a decrease in the open circuit voltage, and it was also shown that “industrial” impurities led to a decrease in the efficiency of energy conversion of solar cells to 2.34 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.