Our target is focused largely on agriculture. In agriculture, farmers play the most important role. When the price falls after the harvest, farmers face immense losses. A country’s GDP is affected by the price fluctuations of agricultural products. Crop price estimation and evaluation are done to take an intelligent decision before farming a specific type of crop. Predicting the price of a crop will help in taking better decisions which results in minimizing the loss and managing the risk of price fluctuations. In this paper, we predicted the price of different crops by analyzing the previous rainfall and WPI data. We used the decision tree regressor (Supervised machine learning algorithm) to analyze the previous data and predict the price for the latest data and estimate the price for the twelve months to come.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.