Abstract. In this paper we deal with the identification of dependencies between time series of equity returns. Marginal distribution functions are assumed to be known, and a bivariate chi-square test of fit is applied in a fully parametric copula approach. Several families of copulas are fitted and compared with Spanish stock market data. The results show that the t-copula generally outperforms other dependence structures, and highlight the difficulty in adjusting a significant number of bivariate data series.Keywords: Copulas, Daily equity returns, Bivariate chi-square statistic, Risk Management.Resum. En aquest article tractem amb la identificació de dependències entre series temporal de rendiments d'accions. Les distribucions marginals se suposen conegudes, i un test ji-quadrat bivariant s'aplica dins d'un enfocament totalment paramètric. Diverses famílies de còpules són ajustades i comparades amb dades de la Bolsa espanyola. Els resultats mostren que la t-còpula generalment supera altres estructures de dependència, i destaca la dificultat d'ajustar un nombre significant de sèries temporals bivariants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.