Zigzag-edged nanographene with two rows of fused linear acenes, called as n- peri-acene (n-PA), is considered as a potential building unit in the arena of organic electronics. n-PAs with four ( peri-tetracene, 4-PA), five ( peri-pentacene, 5-PA) or more benzene rings in a row have been predicted to show open-shell character, which would be attractive for the development of unprecedented molecular spintronics. However, solution-based synthesis of open-shell n-PA has thus far not been successful because of the poor chemical stability. Herein we demonstrated the synthesis and characterization of the hitherto unknown 4-PA by a rational strategy in which steric protection of the zigzag edges playing a pivotal role. The obtained 4-PA possesses a singlet biradical character ( y = 72%) and exhibits remarkable persistent stability with a half-life time ( t) of ∼3 h under ambient conditions. UV-vis-NIR and electrochemical measurements reveal a narrow optical/electrochemical energy gap (1.11 eV) for 4-PA. Moreover, the bay regions of 4-PA enable the efficient 2-fold Diels-Alder reaction, yielding a novel full zigzag-edged circumanthracene.
Inelastic neutron scattering (INS), electron spin (ESR) and nuclear magnetic resonance (NMR) measurements were employed to establish the origin of the strong magnetic signal in lightly holedoped La 1−x Sr x CoO 3 , x ∼ 0.002. Both, INS and ESR low temperature spectra show intense excitations with large effective g-factors ∼ 10 − 18. NMR data indicate the creation of extended magnetic clusters. From the Q-dependence of the INS magnetic intensity we conclude that the observed anomalies are caused by the formation of octahedrally shaped spin-state polarons comprising seven Co ions.
We report a comprehensive experimental investigation on the magnetic anisotropy in bulk single crystals of Cr2Ge2Te6, a quasi-two-dimensional ferromagnet belonging to the family of magnetic layered transition metal trichalcogenides that have attracted recently a big deal of interest with regard to the fundamental and applied aspects of two-dimensional magnetism. For this purpose electron spin resonance (ESR) and ferromagnetic resonance (FMR) measurements have been carried out over a wide frequency and temperature range. A gradual change in the angular dependence of the ESR linewidth at temperatures above the ferromagnetic transition temperature Tc reveals the development of two-dimensional spin correlations in the vicinity of Tc thereby proving the intrinsically low-dimensional character of spin dynamics in Cr2Ge2Te6. Angular and frequency dependent measurements in the ferromagnetic phase clearly show an easy-axis type anisotropy of this compound. Furthermore, these experiments are compared with simulations based on a phenomenological approach, which takes into account results of static magnetization measurements as well as high temperature g factors obtained from ESR spectroscopy in the paramagnetic phase. As a result the determined magnetocrystalline anisotropy energy density (MAE) KU is (0.48 ± 0.02) × 10 6 erg/cm 3 . This analysis is complemented by density functional calculations which yield the experimental MAE value for a particular value of the electronic correlation strength U . The analysis of the electronic structure reveals that the low-lying conduction band carries almost completely spin-polarized, quasihomogeneous, two-dimensional states. arXiv:1810.02560v3 [cond-mat.str-el]
and Anna Isaeva (anna.isaeva@tu-dresden.de) ¥ These authors contributed equally to this work. 2 Combinations of non-trivial band topology and long-range magnetic order hold promise for realizations of novel spintronic phenomena, such as the quantum anomalous Hall effect and the topological magnetoelectric effect. Following theoretical advances material candidates are emerging. Yet, a compound with a band-inverted electronic structure and an intrinsic net magnetization remains unrealized. MnBi2Te4 is a candidate for the first antiferromagnetic topological insulator and the progenitor of a modular (Bi2Te3)n(MnBi2Te4) series. For n = 1, we confirm a non-stoichiometric composition proximate to MnBi4Te7 and establish an antiferromagnetic state below 13 K followed by a state with net magnetization and ferromagnetic-like hysteresis below 5 K. Angleresolved photoemission experiments and density-functional calculations reveal a topological surface state on the MnBi4Te7(0001) surface, analogous to the non-magnetic parent compound Bi2Te3. Our results render MnBi4Te7 as a band-inverted material with an intrinsic net magnetization and a complex magnetic phase diagram providing a versatile platform for the realization of different topological phases.Soon after the discovery of topological insulators (TIs) a decade ago 1 , the role of magnetism and its potential to modify the electronic topology emerged as a central issue in the field of topological materials. Magnetic degrees of freedom provide a powerful means of tuning the decisive characteristic of any topological system: its symmetry. By now it is recognized that the interplay between magnetic order and electronic topology offers a rich playground for the realization of exotic topological states of matter, such as the quantum anomalous Hall state, 2,3 the axion insulator state, 4-6 and magnetic Weyl and nodal lines semimetals, 7-9 enabling in turn different routes to spintronic applications. [10][11][12] The non-trivial topology in paradigmatic TIs like Bi2Te3 is a result of band inversion driven by strong spin-orbit interaction. 13,14 Until recently, the interplay with magnetism in this class of systems has been mostly explored by extrinsic methods, such us doping a known TI
We report a high-field electron spin resonance study in the sub-THz frequency domain of a single crystal of Sr2IrO4 that has been recently proposed as a prototypical spin-orbital Mott insulator. In the antiferromagnetically (AFM) ordered state with noncollinear spin structure that occurs in this material at TN ≈ 240 K we observe both the "low" frequency mode due to the precession of weak ferromagnetic moments arising from a spin canting, and the "high" frequency modes due to the precession of the AFM sublattices. Surprisingly, the energy gap for the AFM excitations appears to be very small, amounting to 0.83 meV only. This suggests a rather isotropic Heisenberg dynamics of interacting Ir 4+ effective spins despite the spin-orbital entanglement in the ground state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.