It is shown how a integrable mechanical system provides all the localized static solutions of a deformation of the linear O(N )-sigma model in two space-time dimensions. The proof is based on the Hamilton-Jacobi separability of the mechanical analogue system that follows when time-independent field configurations are being considered. In particular, we describe the properties of the different kinds of kinks in such a way that a hierarchical structure of solitary wave manifolds emerges for distinct N .
We describe the kink solitary waves of a massive nonlinear sigma model with an S2 sphere as the target manifold. Our solutions form a moduli space of nonrelativistic solitary waves in the long wavelength limit of ferromagnetic linear spin chains.
In this paper we describe the moduli space of kinks in a class of systems of two coupled real scalar fields in (1+1) Minkowskian space-time. The main feature of the class is the spontaneous breaking of a discrete symmetry of (real) Ginzburg-Landau type that guarantees the existence of kink topological defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.