The radiation from circular cylindrical reflector antennas is treated in an accurate manner for both polarizations. The problem is first formulated in terms of the dual series equations and then is regularized by the Riemann-Hilbert problem technique. The resulting matrix equation is solved numeridy with a guaranteed accuracy, and remarkably Little CPU time is needed. The feed directivity is included in the analysis by the complex source point method. Various characteristic patterns are obtained for the front and offset-fed reflector antenna geometries with this analysis, and some comparisons are made with the high frequency techniques. The directivity and radiated power properties are also studied. Manuscript received December 13,1993; revised August 8,1994. This work was supported in part by NATO's Scientific Affairs Division in the framework of the science for stability programme, " A K , and Telecommunications
Closed-form Green's function (CFGF) representations for cylindrically stratified media, which can be used as the kernel of an electric field integral equation, are developed. The developed CFGF representations can safely be used in a method of moments solution procedure, as they are valid for almost all possible source and field points that lie on the same radial distance from the axis of the cylinder (such as the air-dielectric and dielectric-dielectric interfaces) including the axial line (= and =), which has not been available before. In the course of obtaining these expressions, the conventional spectral domain Green's function representations are rewritten in a different form so that i) we can attack the axial line problem and ii) the method can handle electrically large cylinders. Available acceleration techniques that exist in the literature are implemented to perform the summation over the cylindrical eigenmodes efficiently. Lastly, the resulting expressions are transformed to the spatial domain using the discrete complex image method with the help of the generalized pencil of function method, where a modified two-level approach is used. Numerical results are presented in the form of mutual coupling between two current modes to assess the accuracy of the final spatial domain CFGF representations. Index Terms-Closed-form Green's functions, discrete complex image method (DCIM), generalized pencil of function (GPOF) method, method of moments (MoM).
We propose and demonstrate a wireless, passive, metamaterial-based sensor that allows for remotely monitoring submicron displacements over millimeter ranges. The sensor comprises a probe made of multiple nested split ring resonators (NSRRs) in a double-comb architecture coupled to an external antenna in its near-field. In operation, the sensor detects displacement of a structure onto which the NSRR probe is attached by telemetrically tracking the shift in its local frequency peaks. Owing to the NSRR's near-field excitation response, which is highly sensitive to the displaced comb-teeth over a wide separation, the wireless sensing system exhibits a relatively high resolution (<1 μm) and a large dynamic range (over 7 mm), along with high levels of linearity (R2 > 0.99 over 5 mm) and sensitivity (>12.7 MHz/mm in the 1–3 mm range). The sensor is also shown to be working in the linear region in a scenario where it is attached to a standard structural reinforcing bar. Because of its wireless and passive nature, together with its low cost, the proposed system enabled by the metamaterial probes holds a great promise for applications in remote structural health monitoring.
The behavior of a 2-D model of an extended hemielliptic silicon lens of a size typical for THz applications is accurately studied for the case of a plane E-wave illumination. The full-wave analysis of the scattering problem is based on the Muller's boundary integral-equations (MBIE) that are uniquely solvable. A Galerkin discretization scheme with a trigonometric basis leads to a very efficient numerical algorithm. Numerical results related to the focusability of the lens versus its rear-side extension and the angle of the plane-wave incidence, as well as near-field profiles, demonstrate strong resonances. Such effects can change the principles of optimal design of lens-based receivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.