A numerical study of the classical and penalized LDG method applied to vector Helmholtz equation on three dimensional domains is presented. Using a simple numerical flux based on convex combinations classical rates of convergence can be obtained on unstructured meshes while achieving a substantial reduction of the stencil. The superconvergent behaviour of the auxiliary field is investigated on Cartesian meshes. Numerical experiments also suggest convergence of the method for constant approximations on Cartesian meshes. We explore existing scalable preconditioning techniques adapted to the discontinuous Galerkin framework for the low frequency case. Finally the method is tested on examples arising in practical engineering problems with complex valued electric field.
Se presenta un estudio numérico de un precondicionador para la ecuación vectorial de Helmholtz; el cual se deriva de la técnica del Laplaciano desplazado. Se utiliza una nueva versión del método “Local Discontinuous Galerkin” (LDG) como técnica de discretización espacial. Se valida la escalabilidad del precondicionador mediante una serie de experimentos numéricos en dominios poliédricos y aproximaciones de alto orden en problemas de bajas frecuencias en el caso real.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.