BackgroundJalmagna is a popular deepwater rice variety with farmers of India because of its good yield under waterlogged condition. However, the variety is highly susceptible to bacterial blight (BB) disease. The development of resistant cultivars has been the most effective and economical strategy to control the disease under deepwater situation. Three resistance genes (xa5 + xa13 + Xa21) were transferred from Swarna BB pyramid line, using a marker-assisted backcrossing (MAB) breeding strategy, into the BB-susceptible elite deepwater cultivar, Jalmagna.ResultsMolecular marker integrated backcross breeding program has been employed to transfer three major BB resistance genes (Xa21, xa13 and xa5) into Jalmagna variety. During backcross generations, markers closely linked to the three genes were used to select plants possessing these resistance genes and markers polymorphic between donor and recurrent parent were used to select plants that have maximum contribution from the recurrent parent genome. A selected BC3F1 plant was selfed to generate homozygous BC3F2 plants with different combinations of BB resistance genes. The three-gene pyramid and two gene pyramid lines exhibited high levels of resistance against the BB pathogen. Under conditions of BB infection, the three-gene pyramided lines exhibited a significant yield advantage over Jalmagna. The selected pyramided lines showed all agro-morphologic traits of Jalmagna without compromising the yield.ConclusionThe three major BB resistance genes pyramided lines exhibited high level of resistance and are expected to provide durable resistance under deep water situation where control through chemicals is less effective. High similarity in agro-morphologic traits and absence of antagonistic effects for yield and other characters were observed in the best pyramided lines.
Rapid uniform germination and accumulation of biomass during initial phase of seedling establishment is an essential phenotypic trait considered as early seedling vigour for direct seeded situation in rice irrespective of environment. Enhanced role of carbohydrate, amylase, growth hormones, antioxidant enzymes and ascorbic acid brings changes in vigour and phenotype of seedling. Early establishment and demanding life form dominate the surroundings. Crop plant that has better growth overdrives the weed plant and suppresses its growth. Seedling early vigour is the characteristic of seed quality and describes the rapid, uniform germination and the establishment of strong seedlings in any environmental condition. The phenotype of modern rice varieties has been changed into adaptable for transplanted rice with thirst toward water and selection pressure for semi-dwarf architecture resulting in reduced early vigour. Decreasing freshwater availability and rising labour cost drives the search for a suitable alternative management system to enhance grain yield productivity for the burgeoning world population. In view of these issues, much attention has been focused on dry direct-seeded rice, because it demands low input. A rice cultivar with a strong seedling vigour trait is desirable in case of direct seeding. However, seedling vigour has not been selected in crop improvement programmes in conventional breeding due to its complex nature and quantitative inheritance. Molecular markers have been proven effective in increasing selection efficiency, particularly for quantitative traits that are simply inherited. Marker-assisted selection approach has facilitated efficient and precise transfer of genes/QTL(s) into many crop species and suggests a speedy and efficient technique over conventional breeding and selection methods. In this review, we present the findings and investigations in the field of seedling vigour in rice that includes the nature of inheritance of physio-morphological and biochemical traits and QTLs to assist plant breeders who work for direct-seeded rice.
Early seedling vigor (ESV) is the essential trait for direct seeded rice to dominate and smother the weed growth. In this regard, 629 rice genotypes were studied for their morphological and physiological responses in the field under direct seeded aerobic situation on 14th, 28th and 56th days after sowing (DAS). It was determined that the early observations taken on 14th and 28th DAS were reliable estimators to study ESV as compared to56th DAS. Further, 96 were selected from 629 genotypes by principal component (PCA) and discriminate function analyses. The selected genotypes were subjected to decipher the pattern of genetic diversity in terms of both phenotypic and genotypic by using ESV QTL linked simple sequence repeat (SSR) markers. To assess the genetic structure, model and distance based approaches were used. Genotyping of 96 rice lines using 39 polymorphic SSRs produced a total of 128 alleles with the phenotypic information content (PIC) value of 0.24. The model based population structure approach grouped the accession into two distinct populations, whereas unrooted tree grouped the genotypes into three clusters. Both model based and structure based approach had clearly distinguished the early vigor genotypes from non-early vigor genotypes. Association analysis revealed that 16 and 10 SSRs showed significant association with ESV traits by general linear model (GLM) and mixed linear model (MLM) approaches respectively. Marker alleles on chromosome 2 were associated with shoot dry weight on 28 DAS, vigor index on 14 and 28 DAS. Improvement in the rate of seedling growth will be useful for identifying rice genotypes acquiescent to direct seeded conditions through marker-assisted selection.
Iron (Fe) deficiency and toxicity are the most widely prevalent soil-related micronutrient disorders in rice (Oryza sativa L.). Progress in rice cultivars with improved tolerance has been hampered by a poor understanding of Fe availability in the soil, the transportation mechanism, and associated genetic factors for the tolerance of Fe toxicity soil (FTS) or Fe deficiency soil (FDS) conditions. In the past, through conventional breeding approaches, rice varieties were developed especially suitable for low- and high-pH soils, which indirectly helped the varieties to tolerate FTS and FDS conditions. Rice-Fe interactions in the external environment of soil, internal homeostasis, and transportation have been studied extensively in the past few decades. However, the molecular and physiological mechanisms of Fe uptake and transport need to be characterized in response to the tolerance of morpho-physiological traits under Fe-toxic and -deficient soil conditions, and these traits need to be well integrated into breeding programs. A deeper understanding of the several factors that influence Fe absorption, uptake, and transport from soil to root and above-ground organs under FDS and FTS is needed to develop tolerant rice cultivars with improved grain yield. Therefore, the objective of this review paper is to congregate the different phenotypic screening methodologies for prospecting tolerant rice varieties and their responsible genetic traits, and Fe homeostasis related to all the known quantitative trait loci (QTLs), genes, and transporters, which could offer enormous information to rice breeders and biotechnologists to develop rice cultivars tolerant of Fe toxicity or deficiency. The mechanism of Fe regulation and transport from soil to grain needs to be understood in a systematic manner along with the cascade of metabolomics steps that are involved in the development of rice varieties tolerant of FTS and FDS. Therefore, the integration of breeding with advanced genome sequencing and omics technologies allows for the fine-tuning of tolerant genotypes on the basis of molecular genetics, and the further identification of novel genes and transporters that are related to Fe regulation from FTS and FDS conditions is incredibly important to achieve further success in this aspect.
BackgroundRice breeding program needs to focus on development of nutrient dense rice for value addition and helping in reducing malnutrition. Mineral and vitamin deficiency related problems are common in the majority of the population and more specific to developing countries as their staple food is rice.ResultsGenes and QTLs are recently known for the nutritional quality of rice. By comprehensive literature survey and public domain database, we provided a critical review on nutritional aspects like grain protein and amino acid content, vitamins and minerals, glycemic index value, phenolic and flavonoid compounds, phytic acid, zinc and iron content along with QTLs linked to these traits. In addition, achievements through transgenic and advanced genomic approaches have been discussed. The information available on genes and/or QTLs involved in enhancement of micronutrient element and amino acids are summarized with graphical representation.ConclusionCompatible QTLs/genes may be combined together to design a desirable genotype with superior in multiple grain quality traits. The comprehensive review will be helpful to develop nutrient dense rice cultivars by integrating molecular markers and transgenic assisted breeding approaches with classical breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.