We present a new measurement of the positive muon magnetic anomaly, a µ ≡ (gµ − 2)/2, from the Fermilab Muon g −2 Experiment based on data collected in 2019 and 2020. We have analyzed more than four times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of two due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω′ p , and of the anomalous precession frequency corrected for beam dynamics effects, ωa. From the ratio ωa/ω ′ p , together with precisely determined external parameters, we determine a µ = 116 592 057(25) × 10 −11 (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a µ (FNAL) = 116 592 055(24) × 10 −11 (0.20 ppm). The new experimental world average is aµ(Exp) = 116 592 059(22) × 10 −11 (0.19 ppm), which represents a factor of two improvement in precision.
The existence of a new force beyond the Standard Model is compelling because it could explain several striking astrophysical observations which fail standard interpretations. We searched for the light vector mediator of this dark force, the U boson, with the KLOE detector at the DAΦNE e + e − collider. Using an integrated luminosity of 1.54 fb −1 , we studied the process e + e − → Uγ, with U → e + e − , using radiative return to search for a resonant peak in the dielectron invariant-mass distribution. We did not find evidence for a signal, and set a 90% CL upper limit on the mixing strength between the Standard Model photon and the dark photon, ε 2 , at 10 −6 -10 −4 in the 5-520 MeV/c 2 mass range.
The recent interest in a light gauge boson in the framework of an extra U(1) symmetry motivates searches in the mass range below 1 GeV. We present a search for such a particle, the dark photon, in e + e − → Uγ, U → π + π − based on 28 million e + e − → π + π − γ events collected at DAΦNE by the KLOE experiment. The π + π − production by initial-state radiation compensates for a loss of sensitivity of previous KLOE U → e + e − , µ + µ − searches due to the small branching ratios in the ρ − ω resonance region. We found no evidence for a signal and set a limit at 90% CL on the mixing strength between the photon and the dark photon, ε 2 , in the U mass range between 527 and 987 MeV. Above 700 MeV this new limit is more stringent than previous ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.