In this study, we present a fast and robust practical tool for segmentation of solid tumors with minimal user interaction. The lung image is segmented manually by the experts may includes risk and time consuming process. Hence, in this study, the lung image is segmented in order to identify the tumor sector. Initially, the input lung image is applied with the denoising process for removing noises with the aid of multi-wavelet transformation. After this process, the CA algorithm is applied for obtaining the background seeds and foreground seeds (tumor seeds) and then the level set algorithm is applied for acquiring the acute tumor tissues. As a result of the mentioned process, the tumor sector is segmented and the results are depicted. Studies on lung tumor datasets demonstrate 80-85% overlap performance of the proposed algorithm with less sensitivity to seed initialization, robustness with respect to heterogeneous tumor types and its efficiency in terms of computation time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.