Dye-sensitized solar cells have been under development for the last three decades but are yet to see the market. This has been attributed to stability issues of the electrolyte in the cell. Electrolytes can be liquid, quasi-solid, or solid. Liquid electrolytes were the first to be developed and, therefore, have been subject to radical revisions in both composition and applicability. They have shown the best power conversion efficiencies but have poor thermal stability. Although quasi-solid and solid-state electrolytes were developed to overcome these stability issues, they too have their limits. The aim of this paper is to explore the development of liquid electrolytes, outlining the current state of the technology and considering their potential in the photovoltaic market.
Background:The basic premise of preadjusted bracket system is accurate bracket positioning. It is widely recognized that accurate bracket placement is of critical importance in the efficient application of biomechanics and in realizing the full potential of a preadjusted edgewise appliance.Aim:The purpose of this study was to design a calibrating system to accurately detect a point on a plane as well as to determine the accuracy of the Laser Guided Automated Calibrating (LGAC) System.Materials and Methods:To the lowest order of approximation a plane having two parallel lines is used to verify the accuracy of the system. On prescribing the distance of a point from the line, images of the plane are analyzed from controlled angles, calibrated and the point is identified with a laser marker.Results:The image was captured and analyzed using MATLAB ver. 7 software (The MathWorks Inc.). Each pixel in the image corresponded to a distance of 1cm/413 (10 mm/413) = 0.0242 mm (L/P). This implies any variations in distance above 0.024 mm can be measured and acted upon, and sets the highest possible accuracy for this system.Conclusion:A new automated system is introduced having an accuracy of 0.024 mm for accurate bracket placement.
Grid Computing is concerned with the sharing and coordinated use of diverse resources in distributed Virtual Organizations. This introduces various challenging security issues. Among these trusting, the resources to be shared and coordinated with the dynamic and multi-institutional virtual organization environment becomes a challenging security issue. In this paper, an approach for trust assessment and trust degree calculation using subjective logic is suggested to allocate the Data Grid or Computational Grid user a reliable, trusted resource for maintaining the integrity of the data with fast response and accurate results. The suggested approach is explained using an example scenario and also from the simulation results. It is observed that there is an increase in the resource utilization of a trusted resource in contrast to the resource which is not trusted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.