Algorithms developed for scheduling applications on heterogeneous multiprocessor system focus on a single objective such as execution time, cost or total data transmission time. However, if more than one objective (e.g. execution cost and time, which may be in conflict) are considered, then the problem becomes more challenging. This project is proposed to develop a multiobjective scheduling algorithm using Evolutionary techniques for scheduling a set of dependent tasks on available resources in a multiprocessor environment which will minimize the makespan and reliability cost. A Non-dominated sorting Genetic Algorithm-II procedure has been developed to get the pareto-optimal solutions. NSGA-II is a Elitist Evolutionary algorithm, and it takes the initial parental solution without any changes, in all iteration to eliminate the problem of loss of some pareto-optimal solutions.NSGA-II uses crowding distance concept to create a diversity of the solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.