Engineering the architecture of materials is a new and very promising approach to obtain vibration isolation properties. The biggest challenge for lattice structures exhibiting vibration isolation properties is the trade-off between compactness and wide and low-frequency bandgaps, i.e., frequency ranges where the propagation of elastic or acoustic waves is prohibited. Here, we, both numerically and experimentally, propose and demonstrate a new design concept for compact metamaterials exhibiting extraordinary properties in terms of wide and low frequency bandgap and structural characteristics. With its 4 cm side length unit cell, its bandgap opening frequency of 1478 Hz, its band-stop filter behavior in the range 1.48–15.24 kHz, and its structural characteristics, the proposed [Formula: see text] metastructure represents great progress in the field of vibration isolation and a very promising solution for hand-held vibration probes applications that were unattainable so far through conventional materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.