Recently aluminum foaming has been of much interest due to its characteristics properties of light weight structure. Metallic foams are highly porous materials which present complex structure of three-dimensional open cells. This aspect causes strong limitations in mass transport due to electro-deposition technology. In this work, the electro-deposition of copper on aluminum open-cell foams substrates was developed, in order to enhance the thermal and mechanical properties of these cellular materials. The mechanical and thermal characterization of the produced samples was lead through compression and conductivity tests. On the basis of the experimental results, analytical models are proposed to predict the quantity and the quality characteristics of the coatin
This manuscript deals with the electro-deposition of Cu on aluminum foams. Metallic foams are highly porous materials which present complex structure of three-dimensional open cells. This aspect causes strong limitations in mass transport due to electro-deposition technology. Experimental tests were performed to study the influence of the operational parameters on the overall performance of the coated aluminum foams. The experimental findings revealed that the manufactured metal foams were characterized by a high thermal conductivity and low process costs, making these materials very promising in many technological fields. On the basis of the experimental results, analytical models are proposed to predict the quantity and the quality characteristics of the coating
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.