The accumulation of Ca2+ ions in intact human erythrocytes leads to the production of membrane protein polymers larger than spectrin. The polymer has a heterogeneous size distribution and is rich in gamma-glutamyl-epsilon-lysine cross-links. Isolation of this isodipeptide, in amounts as high as 6 mol/10(5) g of protein, confirms the idea [Lorand L., Weissmann, L.B., Epel, D.L., and Bruner-Lorand, J. (1976), Proc. Natl. Acad. Sci. U.S.A. 73, 4479] that the Ca2+-induced membrane protein polymerization is mediated by transglutaminase. Formation of the polymer in the intact cells is inhibited by the addition of small, water-soluble primary amines. Inasmuch as these amines are known to prevent the Ca2+-dependent loss of deformability of the membrane, it is suggested that transglutaminase-catalyzed cross-linking may be a biochemical cause of irreversible membrane stiffening.
A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures of between 0.004 and 1 Gy were measured with doses as low as 0.008 Gy yielding significant responses. The double-strand, sensitive dye PicoGreen was used as an indicator of DNA denaturation. Calibration plots indicate that fluorescence changes corresponding to amounts as low as 1 ng of double stranded DNA (10(6) copies for plasmid puc 19) are detected by this method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.