Manufacturers of commercial thermoelectric modules provide datasheets of the modules including information and graphs about the performance attained at several working conditions. Details about internal parameters are not made available to customers, because in the broad majority of the cases they are not necessary. However, when developing non-standard applications or conducting research projects it is sometimes necessary to make the modules work in different conditions than those shown in the performance curves. This paper shows a methodology to extract thermoelectric internal parameters from the information provided by performance curves, hence allowing scientists to predict the performance of the module at any working condition. The method is based on the basic equations that link thermal and electrical dynamics in which some parameters must be estimated. As a result it is possible to predict the behavior of the modules if they are operated in a non-standard way. One good example is to simulate how a module designed for cooling applications will behave if used as a Seebeck module for power generation. The proposed methodology has been successfully applied to a commercial Peltier module for which the behavior as a thermoelectric generator was simulated and then tested experimentally, attaining very similar results.
KEYWORDS
ACCEPTED MANUSCRIPT2 Thermoelectricity, internal parameter estimation, performance simulation, basic equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.