Replaceable linear polyacrylamide (LPA) has been utilized as a sieving matrix for DNA sequencing by capillary electrophoresis (CE). Difficulties associated with cross-linked polyacrylamide gel stability have been overcome for the routine application of CE to DNA sequencing. A simple laser-induced fluorescence (LIF) detection system based on a single laser and two photomultipliers (PMT) has been adopted for this work. Sequencing information for four bases has been obtained from two fluorescent dyes and two peak height ratios, detected in two optical channels. FAM- and JOE-labeled M13 (-21) primers have been chosen because both dyes are efficiently excited with a low-power argon ion laser, can be optically separated, and exhibit minimal dye-based shifts in DNA fragment mobilities. Addition of denaturants to the electrophoresis running buffer (1 x TBE, 3.5 M urea, 30% formamide) and column operation at 32 degrees C permitted the resolution of difficult compressed sites in the sequence of phage M13mp18. Careful examination of the polymerization reaction of LPA has led to methodology that has proven to be reproducible for obtaining DNA sequencing information of M13mp18 phage for 350 nucleotides in close to 30 min.
Using a zone of constant temperature and denaturant concentration in capillary electrophoresis, we have devised a simple, rapid, and reproducible system for separating mutant from wild type DNA sequences with high resolution. Important to the success of this method, which we call Constant Denaturant Capillary Electrophoresis (CDCE), has been the use of linear polyacrylamide at viscosity levels that permit facile replacement of the matrix after each run. For a typical 100 bp fragment, point mutation-containing heteroduplexes are separated from wild type homoduplexes in less than 30 minutes. Using laser-induced fluorescence to detect fluorescent-tagged DNA, the system has an absolute limit of detection of 3 x 10(4) molecules with a linear dynamic range of six orders of magnitude. The relative limit of detection at present is 3 x 10(-4), i.e. 10(5) mutant sequences are recognized among 3 x 10(8) wild type sequences. The new approach should be applicable to the identification of low frequency mutations, to mutational spectrometry and to genetic screening of pooled samples for detection of rare variants.
This paper presents the principles of an instrument designed for DNA sequencing using the standard four-dye-labeled primer approach. The method is based on capillary electrophoresis with laser-induced fluorescence and an intensified diode array detector. An important goal of the instrument design has been a detection system that possesses high sensitivity and high spectral resolution. Based on an analysis of the spectral characteristics of the four standard dye-labeled primers, FAM, JOE, ROX, and TAMRA, the strategy has been to use a two-laser-two-window approach, in which a 488-nm argon ion laser illuminates one window, followed by a 543-nm helium-neon laser illuminating the second window. The two-window approach has no moving parts and permits continuous illumination. Spectral resolution is provided by a grating spectrograph and a cooled intensified diode array. The estimated limit of detection for the standard four dye-labeled primers was found to be in the sample concentration range of 1 x 10(-12) M. To achieve these low levels, complete free-radical polymerization of polyacrylamide has been found to be necessary in order to reduce background noise. In addition, reduction in background noise was accomplished by continual purging of the anodic reservoir in order to prevent electrolysis products from entering the capillary. Separation of DNA sequencing reaction products is demonstrated on a 9% T linear polyacrylamide column.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.