An N-slit interferometer is demonstrated with an
intra-interferometric propagation path of up to 35 m. The configuration of the
N-slit interferometer was extended to its maximum as
allowed by the available grating, laser wavelength, and dimensions of the
digital detector. Interferometric computations, based on the application of
Dirac’s notation, were successfully used to predict the structure and divergence
of the propagating interferograms. The high sensitivity of the interferometric
signal to intra-path perturbations renders this instrument particularly suitable
for detecting and registering clear air turbulence, and variations in the
refractive index, in the propagation path.
Optically pumped all-rare-gas lasers (OPRGL) utilize metastable atoms of the heavier rare gases as lasing species. The required number density of metastables for efficient laser operation is 1012–1013 cm−3 in He buffer gas at pressures in the 400–1000 Torr range. Such metastable densities are easily produced in a nanosecond pulsed discharge, even at pressures larger than atmospheric, but problems appear when one is trying to achieve continuous production. The reason for low production efficiency in many types of continuous discharge at atmospheric pressure is the low value of the E/N parameter (<5–6 Td). In the present work, we have examined the possibility of using a dielectric barrier discharge (DBD) to provide near continuous, high densities of Ar and Xe metastables. Experiments were performed using a 20 kHz DBD in binary Ar and Xe mixtures with He, and in ternary Ar:Xe:He mixtures at pressures up to 1 atmosphere. Concentrations were measured by means of tunable diode laser absorption spectroscopy. Time-averaged [Ar(1s5)] and [Xe(1s5)] number densities on the order of 1012 cm−3 were readily achieved. The temporal behavior of [Xe(1s5)] throughout the DBD cycle was observed. The results demonstrate the feasibility of using DBDs for OPRGL development. Spectral scans over the absorption lines were also used to examine the pressure broadening coefficients for the 912.3 nm Ar line in He and the Xe 904.5 nm line in Ne and He.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.