Characterization of the vulcanization process of silicone rubber was achieved through the modeling of dynamic DSC tests. The Kissinger equation and the Kamal-Sourour model were used to determine kinetic parameters that fit the experimental data. The technique allows for the determination of the activation energy through Kissinger's model, which is then used to mathematically determine the other five parameters for the Kamal-Sourour model. This novel technique finds a physically meaningful activation energy. The method generates a single set of parameters that accurately models all scanning rates tested (1, 2.5, 5, and 10 K/min). Five formulations of liquid silicone rubber as well as one solid silicone rubber were tested and modeled. For each material, the models generated fitting parameters that were in agreement with the dynamic DSC scans. The models were used to compare the processing of the liquid and solid silicone rubber. The characterization of both materials demonstrates the lower processing time, temperatures, and energy consumption when processing liquid silicone rubber, as compared to processing of hard silicone rubber. POLYM. ENG. SCI., 47:675
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.