W-Beam guardrail system has been in use as a standard for roadside safety barrier since 1950s. Recently, its safety performance standard has been upgraded to absorb impact from large vehicles. This performance standard requires guardrail system to be capable of capturing and redirecting a large range of vehicle types and sizes but its effects on safety of motorcyclists are not yet understood.The paper describes a three-dimensional computer simulation of the kinematics impact of motorcycle and dummy rider with W-Beam guardrail inclined at angles 45 and 908 to the initial direction of travel. The simulation is based on the test procedure recommended by ISO 13232 on the configurations for motorcycle-car impact. The focus of this study is not on the motorcycle change in velocity, but on the rider's kinematics and acceleration vs. time history.Multibody model of motorcycle and finite element model of guardrail were developed in commercially available software. The simulation results are presented in this paper in form of kinematics and acceleration vs. time history.
This study uses computer simulations to study the impact of a motorcycle with the conventional w-beam guardrail. A three-dimensional computer simulation of a scaled hybrid III 50th-percentile male dummy mounted on a motorcycle and colliding with a w-beam guardrail is carried out. A multi-body model of the motorcycle and finite element model of the guardrail are developed using commercially available software. The simulation model is validated with a physical crash test conducted with same initial impact configurations. Impacts at speeds of 32, 48, and 60 km/h at an impact angle at 45 degrees are considered. The predicted forces and accelerations are compared with the biomechanical limits for each body part and the risk of injury to the rider are evaluated. Speed was found to have a significant influence on the level of injury to the head, neck, chest, and femur. A significant reduction of the severity of injuries was found when the impact speed was reduced from 60 to 32km/h. The accelerations experienced by the head and chest are found to be higher than safe levels for impact speeds of 48 and 60 km/h. The biomechanical limit for the right femur is exceeded at all three considered impact speeds. Neck injuries are also a concern, with the predicted tension values and neck bending extent being higher than the biomechanical limit for the 60 km/h impact speed. In light of these results, it is suggested that the design of guardrails should be reviewed with a focus on the safety of motorcyclists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.