We present a projection-operator method to express the generalized nonlinear Schrödinger equation for pulse propagation in optical fibers, in terms of the pulse parameters, called collective variables, such as the pulse width, amplitude, chirp, and frequency. The collective variable (CV) equations of motion are derived by imposing a set of constraints on the CVs to minimize the soliton dressing during its propagation. The lowest-order approximation of this CV approach is shown to be equivalent to the variational Lagrangian method. Finally, we demonstrate the application of this CV theory for pulse propagation in dispersion-managed optical fiber links.
Using the equations of motion of pulse width and chirp, we present an analytical method for designing dispersion-managed (DM) fiber systems without optical losses. We show that the initial Gaussian pulse considered for the analytical design of periodically amplified DM fiber systems with losses will propagate as a proximity fixed point. Then averaging the DM soliton fields obtained from the slow dynamics of the proximity fixed point will yield the exact fixed point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.