BackgroundThe provision of feed is a major cost in beef production. Therefore, the improvement of feed efficiency is warranted. The direct assessment of feed efficiency has limitations and alternatives are needed. Small intestine micro-architecture is associated with function and may be related to feed efficiency. The objective was to verify the potential histomorphological differences in the small intestine of animals with divergent feed efficiency.MethodsFrom a population of 45 feedlot steers, 12 were selected with low-RFI (superior feed efficiency) and 12 with high-RFI (inferior feed efficiency) at the end of the finishing period. The animals were processed at 13.79 ± 1.21 months of age. Within 1.5 h of slaughter the gastrointestinal tract was collected and segments from duodenum and ileum were harvested. Tissue fragments were processed, sectioned and stained with hematoxylin and eosin. Photomicroscopy images were taken under 1000x magnification. For each animal 100 intestinal crypts were imaged, in a cross section view, from each of the two intestinal segments. Images were analyzed using the software ImageJ®. The measurements taken were: crypt area, crypt perimeter, crypt lumen area, nuclei number and the cell size was indirectly calculated. Data were analyzed using general linear model and correlation procedures of SAS®.ResultsEfficient beef steers (low-RFI) have a greater cellularity (indicated by nuclei number) in the small intestinal crypts, both in duodenum and ileum, than less efficient beef steers (high-RFI) (P < 0.05). The mean values for the nuclei number of the low-RFI and high-RFI groups were 33.16 and 30.30 in the duodenum and 37.21 and 33.65 in the ileum, respectively. The average size of the cells did not differ between feed efficiency groups in both segments (P ≥ 0.10). A trend was observed (P ≤ 0.10) for greater crypt area and crypt perimeter in the ileum for cattle with improved feed efficiency.ConclusionImproved feed efficiency is associated with greater cellularity and no differences on average cell size in the crypts of the small intestine in the bovine. These observations are likely to lead to an increase in the energy demand by the small intestine regardless of the more desirable feed efficiency.
The beef industry has emphasized the improvement of feed utilization, as measured by modeling feed intake through performance traits to calculate residual feed intake (RFI). Evidence supports an inverse relationship between feed efficiency and reproductive function. The objective of this study was to determine the relationship of reproductive assessments and RFI unadjusted (RFI Koch ) or adjusted for body composition (RFI us ) and the relationship among fertility-related parameters. In total, 34 crossbred bulls were housed together for 112 days of performance evaluation, followed by assessment of scrotum IR imaging, scrotal circumference, testes ultrasonography and semen quality parameters at 377 ± 33.4 days of age. Bulls were slaughtered at 389 ± 34.0 days of age, and analyses of carcass composition, biometrics and histomorphometry of the testis and epididymis were conducted. Bulls were grouped into two subpopulations based on divergence of RFI, and within each RFI model either by including 50% of the population (Halves, high and low RFI, n = 17) or 20.6% extremes of the population (Tails, high and low RFI, n = 7). The means of productive performance and fertility-related measures were compared through these categories. Pearson's correlation was calculated among fertility-related measures. In the Halves subpopulation of the RFI us , sperm of low-RFI bulls had decreased progressive motility (47.30% v. 59.90%) and higher abundance of tail abnormalities (4.30% v. 1.80%) than that of high-RFI bulls. In the Tails subpopulation of the RFI Koch , low RFI displayed less variation in the scrotum surface temperature (0.62°C v. 1.16°C), decreased testis echogenicity (175.50 v 198.00 pixels) and larger (60.90 v. 56.80 mm 2 ) but less-developed seminiferous tubules than high-RFI bulls. The evaluation of fertility-related parameters indicated that a higher percentage of immature seminiferous tubules was correlated with occurrence of sperm with distal droplets (r = 0.59), a larger temperature variation at the top of the scrotum was correlated with improved sperm progressive motility (r = 0.38), a lower occurrence of sperm loose head abnormalities was correlated with larger temperature variation at the lower part of the scrotum (r = − 0.43), and a lower minimum testis echogenicity (r = −0.59) and smaller scrotal circumference (r = 0.72) were correlated with age. The adjustment for body composition (RFI determination) enabled distinct biological inferences about reproduction and feed efficiency when compared with the non-adjusted model. However, both RFI models and the correlation analysis supported the hypothesis that feed-efficient bulls have features of delayed sexual maturity. Overall, the assessment of fertility-related measurements is important to avoid the improvement of feed efficiency at the expense of reproductive function in young bulls.
Our objectives were to (1) determine whether the abomasal infusion of behenic acid (C22:0) elevated hepatic ceramide relative to palmitic acid (C16:0) or docosahexaenoic acid (C22: 6n -3) infusion; (2) assess whether the abomasal infusion of choline chloride or l-serine elevated hepatic phosphatidylcholine (PC) in cows abomasally infused with C16:0; and (3) characterize the PC lipidome in cows abomasally infused with C22: 6n -3, relative to C16:0 or C22:0 infusion. In a 5 × 5 Latin square design, 5 rumen-cannulated Holstein cows (214 ± 4.9 DIM; 3.2 ± 1.1 parity) were enrolled in a study with 6-d periods. Abomasal infusates consisted of (1) palmitic acid (PA; 98% C16:0); (2) PA + choline chloride (PA+C; 50 g/d choline chloride);(3) PA + l-serine (PA+S; 170 g/d l-serine); (4) behenic acid (BA; 92% C22:0); and (5) an algal oil rich in docosahexaenoic acid (DHA; 44% C22: 6n -3). Emulsion infusates provided 301 g/d of total fatty acids containing a minimum of 40 g/d of C16:0. Cows were fed a corn silage-based diet. Milk was collected on d −2, −1, 5, and 6. Blood was collected and liver biopsied on d 6 of each period. Although we did not detect differences in milk yield, milk fat yield and content were lower in cows infused with DHA relative to PA. Plasma triacylglycerol concentrations were lower with DHA treatment relative to PA or BA. Cows infused with DHA had lower plasma insulin concentrations relative to cows infused with PA only. For objective 1, hepatic ceramide -d18: 2/ 22: 0 was highest in cows infused with BA relative to other treatments. For objective 2, plasma free choline concentrations were greater in PA+C cows relative to PA; however, we did not observe this effect with PA+S. Plasma total PC concentrations were similar for all treatments. Regarding the hepatic lipidome, a total of 18 hepatic PC were higher (e.g., PC -16: 1/ 18: 2) and 25 PC were lower (e.g., PC -16: 0/ 22: 6) with PA+C infusion relative to PA. In addition, 17 PC were higher (e.g., PC -20: 3/ 22: 5) and 21 PC were lower (e.g., PC -18: 0/ 22: 6) with PA+S infusion relative to PA. For objective 3, hepatic concentrations of many individual saturated PC (e.g., PC -18: 0/ 15: 0) were lower with DHA relative to other treatments. Hepatic concentrations of highly unsaturated PC with very-long-chain fatty acids (e.g., PC -14: 0/ 22: 6) were higher in DHA-infused cows relative to PA, PA+C, PA+S, or BA. The abomasal infusion of emulsions containing palmitic acid, palmitic acid with choline chloride or serine, behenic acid, or docosahexaenoic acid influence the hepatic ceramide and PC profiles of lactating cows.
Deoiled soy lecithin is a feed additive enriched in phospholipids. Our study evaluated the effects of dietary deoiled soy lecithin supplementation on (1) milk production and composition, (2) plasma and milk fatty acid (FA) content and yield, and (3) apparent FA digestibility and absorption in lactating dairy cows fed fractionated palm fat. In a split-plot Latin square design, 16 Holstein cows (160 ± 7 days in milk; 3.6 ± 1.2 parity) were randomly allocated to a main plot receiving a corn silage and alfalfa haylage-based diet with palm fat containing either moderate (MPA) or high palmitic acid (HPA) content at 1.75% of ration dry matter (72 or 99% palmitic acid, respectively; n = 8/palm fat diet). On each palm fat diet, deoiled soy lecithin was top-dressed at 0, 0.12, 0.24, or 0.36% of ration dry matter in a replicated 4 × 4 Latin square design. Following a 14-d covariate period, lecithin supplementation spanned 14 d, with milk and blood collected during the final 3 d. Milk composition and pooled plasma markers were measured. The statistical model included the fixed effects of palm fat type, lecithin dose, period, and the interaction between palm fat type and lecithin dose. The random effect of cow nested within palm fat group was also included. Lecithin linearly decreased dry matter intake. In cows fed HPA, lecithin feeding reduced milk fat content and tended to decrease milk fat yield. Although no changes in milk yield were observed, a quadratic reduction in 3.5% fatcorrected milk was observed with increasing lecithin dose. Lecithin linearly increased energy-corrected milk efficiency in cows fed MPA. Lecithin supplementation also decreased milk urea nitrogen, relative to unsupplemented cows. The proportion of 16-carbon FA in milk fat decreased linearly with lecithin dose, whereas 18-carbon FA increased linearly. Lecithin reduced de novo FA (<16-carbon) content and tended to increase preformed FA (>16-carbon) content in a linear manner. Compared with MPA, HPA diets reduced apparent total and 16-carbon FA digestibility and absorption. Deoiled soy lecithin feeding did not modify FA digestibility or absorption. Our observations suggest that soy lecithin feeding modifies rumen digestion to reduce dry matter intake and change milk composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.