With the objective to optimize fixed-time artificial insemination (FTAI) protocols based on estradiol benzoate (EB) and progesterone (P4), we performed 2 experiments (Exp.) in dairy cows. In Exp. 1 (n=44), we hypothesized that increased EB (EB3=3 mg vs. EB2=2 mg) on d 0 would improve synchronization of ovarian follicle wave emergence. Likewise, in Exp. 2 (n=82), we hypothesized that a GnRH treatment on d -3 (early in a follicular wave on d 0) versus d -7 (presence of a dominant follicle on d 0) would better synchronize wave emergence. Moreover, results from both experiments were combined to identify reasons for the lack of synchronization. All cows were treated with EB at the time of introduction of a P4 implant (d 0). On d 7, cows were given 25 mg of prostaglandin F2α; on d 8, the implant was removed and cows were given 1mg of estradiol cypionate. All cows received FTAI on d 10. In both experiments, daily ultrasound evaluations were performed and, in Exp. 2, circulating P4 was evaluated during the protocol. Pregnancy per artificial insemination (P/AI) was determined on d 31 and 59 after FTAI. In Exp. 1, EB dose did not change time to wave emergence, but EB3 compared with EB2 decreased the percentage of cows with a corpus luteum on d 7 (19.8 vs. 55.3%) and time to ovulation (10.4 vs. 10.9 d). In Exp. 2, although we detected a tendency for delayed follicle wave emergence after the start of the FTAI protocol in cows ovulating to GnRH given on d -7, there was no difference in percentage of cows with a synchronized wave emergence (~80%). Regardless of treatment, more cows with P4<0.1 ng/mL, compared with P4≥0.1 and <0.22 ng/mL at the time of AI, ovulated to the protocol (81.2 vs. 58.0%) and had increased P/AI (47.4 vs. 21.4%). An analysis of data from both experiments showed that only 73.8% (93/126) of cows had synchronized wave emergence, and only 77.8% (98/126) of cows ovulated at the end of the protocol. Fertility was much greater in cows that had emergence of a new wave synchronized and ovulated to end of the protocol [P/AI 61.3% (46/75)] compared with cows that failed to present one or both of the outcomes above [15.7% (8/51)]. Thus, although current FTAI protocols using EB and P4 produce P/AI between 30 and 40% for lactating dairy cows, there remains room for improvement because less than 60% (75/126) of the cows were correctly synchronized. Starting the FTAI protocol without the dominant follicle or increasing the dose of EB to 3mg was not effective in increasing synchronization rate.
The impressive increase in the use of assisted reproductive technologies (ARTs), especially in cattle, during the last few years in Brazil is well known worldwide. In 2015, there were over 13.7 million artificial inseminations (AI), of which, about 77% were carried out using fixed-time AI (FTAI). This technology has helped to substantially improve reproductive efficiency in beef and dairy cattle. In relation to embryo transfer, production of in vivo derived (IVD) embryos remained relatively stable, with average production of 30-40,000 embryos per year, whereas in vitro production (IVP) of embryos had a substantial increase, from about 12,500 IVP embryos in 2000 to more than 300,000 IVP embryos after 2010. The increasing availability and use of sex-sorted sperm was one of the factors responsible for a recent shift from the predominance of IVP embryos from beef breeds to dairy breeds in Brazil. Moreover, there was also an increase from 13% in 2014 to 29% in 2015 in the percentage of vitrified/frozen embryos. Moreover, the successful use of protocols for fixed-time ET (FTET) due to their high efficiency and ease of implementation, has facilitated the dissemination of ET programs all over Brazil. However, there is room for improvement, since there are several reports of high pregnancy loss and high peripartum loss, when IVP embryos are used. The production of healthy cattle by somatic cell nuclear transfer has also increased in the last few years in Brazil, but despite substantial progress in reducing postnatal losses, no drastic increase in cloning efficiency up to parturition has occurred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.