We have measured the optical conductivity of single crystal LuMnO3 from 10 to 45000 cm(-1) at temperatures between 4 and 300 K. A symmetry allowed on-site Mn d-d transition near 1.7 eV is observed to blueshift ( approximately 0.1 eV) in the antiferromagnetic state due to Mn-Mn superexchange interactions. Similar anomalies are observed in the temperature dependence of the TO phonon frequencies which arise from spin-phonon interaction. We find that the known anomaly in the temperature dependence of the quasistatic dielectric constant epsilon(0) below T(N) approximately 90 K is overwhelmingly dominated by the phonon contributions.
We have measured optical reflectivity of Li and Ti doped NiO (LTNO) in the infrared range at various temperatures. A Drude-like absorption is found at low energy, ω < 100 cm −1 and its spectral weight increases substantially as temperature decreases. This observation and DC-resistivity result show that LTNO has a conductive grain and resistive boundary. Such composite structure provides evidence of the Maxwell-Wagner (MW) mechanism as the origin of the high dielectric constant εo. We propose a three-phase granular structure and show that this extended MW model explains the observed frequency and temperature dependence of the dielectric constant as well as the giant value of εo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.