In the present paper, an MHD three-dimensional non-Newtonian fluid flow over a porous stretching/shrinking sheet in the presence of mass transpiration and thermal radiation is examined. This problem mainly focusses on an analytical solution; graphene water is immersed in the flow of a fluid to enhance the thermal efficiency. The given non-linear PDEs are mapped into ODEs via suitable transformations, then the solution is obtained in terms of incomplete gamma function. The momentum equation is analyzed, and to derive the mass transpiration analytically, this mass transpiration is used in the heat transfer analysis and to find the analytical results with a Biot number. Physical significance parameters, including volume fraction, skin friction, mass transpiration, and thermal radiation, can be analyzed with the help of graphical representations. We indicate the unique solution at stretching sheet and multiple solution at shrinking sheet. The physical scenario can be understood with the help of different physical parameters, namely a Biot number, magnetic parameter, inverse Darcy number, Prandtl number, and thermal radiation; these physical parameters control the analytical results. Graphene nanoparticles are used to analyze the present study, and the value of the Prandtl number is fixed to 6.2. The graphical representations help to discuss the results of the present work. This problem is used in many industrial applications such as Polymer extrusion, paper production, metal cooling, glass blowing, etc. At the end of this work, we found that the velocity and temperature profile increases with the increasing values of the viscoelastic parameter and solid volume fraction; additionally, efficiency is increased for higher values of thermal radiation.
The current article explains the 3-D MHD fluid flow under the impact of a magnetic field with an inclined angle. The porous sheet is embedded in the flow of a fluid to yield the better results of the problem. The governing PDEs are mapped using various transformations to convert in the form of ODEs. The yielded ODEs momentum equation is examined analytically to derive the mass transpiration and then it is used in the energy equation and solved exactly by using various controlling parameters. In the case of multiple solutions, the closed-form exact solutions of highly non-linear differential equations of the flow are presented as viscoelastic fluid, which is classified as two classes, namely the second order liquid and Walters’ liquid B fluid. The results can be obtained by using graphical arrangements. The current work is utilized in many real-life applications, such as automotive cooling systems, microelectronics, heat exchangers, and so on. At the end of the analysis, we concluded that velocity and mass transpiration was more for Chandrasekhar’s number for both the stretching and shrinking case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.