New developments in osteotomy techniques and methods of fixation have caused a revival of interest of osteotomies around the knee. The current consensus on the indications, patient selection and the factors influencing the outcome after high tibial osteotomy is presented. This paper highlights recent research aimed at joint pressure redistribution, fixation stability and bone healing that has led to improved surgical techniques and a decrease of post-operative time to full weight-bearing.
An abnormal lateral position of the tibial tuberosity causes distal malalignment of the extensor mechanism of the knee and can lead to lateral tracking of the patella causing anterior knee pain or objective patellar instability, characterised by recurrent dislocation. Computer tomography is used for a precise pre-operative assessment of the tibial tubercle-trochlear groove distance. A distance of more than 15 mm is considered to be pathological and an indication for surgery in symptomatic patients. In a prospective study we performed a subtle transfer of the tibial tuberosity according to the information gained from the pre-operative CT scan. This method was applied to two groups of patients, those with painful lateral tracking of the patella, and those with objective patellar instability. We evaluated the clinical results in 30 patients in each group. The outcome was documented at 3, 12 and 24 months using the Lysholm scale, the Kujala score, and a visual analogue pain score. Post-operatively, all but one patient in the instability group who had a patellar dislocation requiring further surgery reported good improvement with no further subluxation or dislocation. All patients in both groups had a marked improvement in pain and functional score. Two patients sustained a tibial fracture six and seven weeks after surgery. One patient suffered a per-operative fracture of the tibial tubercle which later required further fixation. If carefully performed, this type of transfer of the tibial tubercle appears to be a satisfactory technique for the treatment of patients with an increased tibial tubercle-trochlear groove distance and who present with symptoms related to lateral maltracking of the patella.
Femoral component rotation from a total knee prosthesis can be determined by either a measured resection technique or a balanced gap technique. With the balanced gap implantation technique, femoral component rotation can vary freely within the restrictions produced by soft tissue structures. Because internal rotation might cause patella problems, the effect of ligament releases on femoral component rotation in a prospective clinical study was studied. Femoral component rotation was measured intraoperatively with a tensor applied in flexion at 150 N in 87 knees. Great interpatient variability was found; femoral component rotation, reference from the posterior condyles, ranged from -4°to 13°. There was no difference in femoral component rotation of knees with or without ligament releases in extension. However, knees with major medial release had less external femoral component rotation than knees with minor lateral releases. Preoperative alignment had no influence on femoral component rotation. The use of the balanced gap implantation technique theoretically will result in a balanced flexion gap, but the amount of femoral component rotation will be variable owing to patient variability and variation in ligament releases.
The anterior cruciate ligament (ACL) consists of an anteromedial bundle (AMB) and a posterolateral bundle (PLB). A reconstruction restoring the functional two-bundled nature should be able to approximate normal ACL function better than the most commonly used singlebundle reconstructions. Accurate tunnel positioning is important, but difficult. The purpose of this study was to provide a geometric description of the centre of the attachments relative to arthroscopically visible landmarks. The AMB and PLB attachment sites in 35 dissected cadaver knees were measured with a 3D system, as were anatomical landmarks of femur and tibia. At the femur, the mean ACL centre is positioned 7.9 ± 1.4 mm (mean ± 1 SD) shallow, along the notch roof, from the most lateral over-the-top position at the posterior edge of the intercondylar notch and from that point 4.0 ± 1.3 mm from the notch roof, low on the surface of the lateral condyle wall.The mean AMB centre is at 7.2 ± 1.8 and 1.4 ± 1.7 mm, and the mean PLB centre at 8.8 ± 1.6 and 6.7 ± 2.0 mm. At the tibia, the mean ACL centre is positioned 5.1 ± 1.7 mm lateral of the medial tibial spine and from that point 9.8 ± 2.1 mm anterior. The mean AMB centre is at 3.0 ± 1.6 and 9.4 ± 2.2 mm, and the mean PLB centre at 7.2 ± 1.8 and 10.1 ± 2.1 mm. The ACL attachment geometry is well defined relative to arthroscopically visible landmarks with respect to the AMB and PLB. With simple guidelines for the surgeon, the attachments centres can be found during arthroscopic single-bundle or double-bundle reconstructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.