Nagpur City located in semiarid area of central India is a fast-growing industrial centre. In recent years, rapid development has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The present study was undertaken to assess major ion chemistry of shallow groundwater to understand geochemical evolution of groundwater and water quality for promoting sustainable development and effective management of groundwater resources. A total of 47 water samples were collected from shallow aquifer of selected parts of the city and the water chemistry of various ions viz. Ca(2 +), Mg(2 +), Na(+), K(+), CO(3)(2-), HCO(3)(-), Cl(-), SO(4)(2-) and NO(3)(-) are carried out. The chemical relationships in Piper diagram identify Ca-HCO(3)-Cl and mixed Ca-Na-HCO(3)-Cl as most prevalent water types. Alkaline earth exceeds alkalis and weak acids exceed strong acids. Ionic ratios and Gibb's diagram suggest that silicate rock weathering and anthropogenic activities are the main processes that determine the ionic composition in the study area. The nitrate appeared as a major problem of safe drinking water in this region. We recorded highest nitrate concentration, i.e., 411 mg/l in one of the dug well. A comparison of groundwater quality in relation to drinking water quality standards revealed that about half of the shallow aquifer samples are not suitable for drinking.
Hydrogeochemical investigations are carried out in the northeastern part of Nagpur urban to assess the quality of groundwater for its suitability for drinking and irrigation purposes. Groundwater samples are collected from both shallow and deep aquifers to monitor the hydrochemistry of various ions. The groundwater quality of the area is adversely affected by urbanization as indicated by distribution of EC and nitrate. In the groundwater of study area, Ca 2? is the most dominant cation and Cland HCO 3 -are the dominant anions. Majority of the samples have total dissolved solids values above desirable limit and most of them belong to very hard type. As compared to deep aquifers, shallow aquifer groundwaters are more polluted and have high concentration of NO 3 -. The analytical results reveal that most of the samples containing high nitrate also have high chloride. Major hydrochemical facies were identified using Piper trilinear diagram. Alkaline earth exceeds alkalis and weak acids exceed strong acids. Shoeller index values reveal that baseexchange reaction exists all over the area. Based on US salinity diagram most of samples belong to high salinitylow sodium type. A comparison of groundwater quality in relation to drinking water standards showed that most of the water samples are not suitable for drinking purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.