Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of su ciently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fields, we present evidence of Weibelgenerated magnetic fields that grow in opposing, initially unmagnetized plasma flows from laser-driven laboratory experiments. Three-dimensional particle-in-cell simulations reveal that the instability e ciently extracts energy from the plasma flows, and that the self-generated magnetic energy reaches a few percent of the total energy in the system. This result demonstrates an experimental platform suitable for the investigation of a wide range of astrophysical phenomena, including collisionless shock formation in supernova remnants, large-scale magnetic field amplification, and the radiation signature from gamma-ray bursts.The magnetic fields required for collisionless shock formation in astrophysical systems may either be initially present, for example in supernova remnants or young galaxies 1 , or they may be selfgenerated in systems such as gamma-ray bursts (GRBs; ref. 2). In the case of GRB outflows, the intense magnetic fields are greater than those which can be seeded by the GRB progenitor or produced by misaligned density and temperature gradients (the Biermannbattery effect) 3,4 . It has long been known that instabilities can generate strong magnetic fields, even in the absence of seed fields. Weibel considered the development of an electromagnetic instability driven by the electron velocity anisotropy in a background of resting ions 5 . The signature of the instability is a pattern of current filaments stretched along the axis of symmetry of the electron motion. The process is quite general, and subsequent work has shown that such instabilities can be excited in both non-relativistic and relativistic shocks. This general nature makes the Weibel instability common in astrophysical systems [6][7][8] . The instability provides a mechanism by which the electromagnetic turbulence associated with the formation of collisionless shocks is fed by the flow anisotropy of the protons (and ions) stochastically reflecting off of the shock 9-11 , and leading ultimately to strong particle acceleration in GRB's (ref. 12).
We measured the stopping of energetic protons in an isochorically heated solid-density Be plasma with an electron temperature of ∼32 eV, corresponding to moderately coupled ½ðe 2 =aÞ=ðk B T e þ E F Þ ∼ 0.3 and moderately degenerate ½k B T e =E F ∼ 2 "warm-dense matter" (WDM) conditions. We present the first highaccuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories in WDM plasma.
A three-axis, 2.5 mm overall diameter differential magnetic probe (also known as B-dot probe) is discussed in detail from its design and construction to its calibration and use as diagnostic of fast transient effects in exploding plasmas. A design and construction method is presented as a means to reduce stray pickup, eliminate electrostatic pickup, reduce physical size, and increase magnetic signals while maintaining a high bandwidth. The probe's frequency response is measured in detail from 10 kHz to 50 MHz using the presented calibration method and compared to theory. The effect of the probe's self-induction as a first order correction in frequency, O(omega), on experimental signals and magnetic field calculations is discussed. The probe's viability as a diagnostic is demonstrated by measuring the magnetic field compression and diamagnetism of a sub-Alfvenic (approximately 500 km/s, M(A) approximately 0.36) flow created from the explosion of a high-density energetic laser plasma through a cooler, low-density, magnetized ambient plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.