According to Starling's law of the heart, the force of contraction during the ejection of blood is a function of the end-diastolic volume. To seek the molecular explanation of this effect, a study was made of the effects of length on Ca2+ sensitivity during tension development by isolated demembranated cardiac muscle in which the cardiac form of troponin C was substituted with skeletal troponin C. The results of troponin C exchange were compared at sarcomere lengths of 1.9 and 2.4 micrometers. Enhancement of the myocardial performance at the stretched length was greatly suppressed with the skeletal troponin C compared with the cardiac troponin C. Thus the troponin C subunit of the troponin complex that regulates the activation of actin filaments has intrinsic molecular properties that influence the length-induced autoregulation of myocardial performance and may be a basis for Starling's law of the heart.
SUMMARY1. Skinned fibre preparations of right ventricular trabeculae, psoas and soleus muscles from hamster and rabbit were activated by Ca2' and the length dependencies of their pCa (-log [Ca2+])-force relationships were compared.2. Ca2+ sensitivity of the myocardium was higher at 22-24,tm 7. Using mutant CBM2A, in which site 2 was inactivated, the activation of cardiac muscle by both Ca2+ and Sr2+ ions was completely blocked. This is the expected N1S 8789 J. GULATI, E. SONNENBLICK AND A. BABU result, since both regulatory sites were now inactive, regulatory site 1 being normally inactive in cardiac muscle. Also, when this mutant was loaded into a moderately extracted fibre, the length dependence remained at the reduced level observed after partial TnC extraction. This shows that the modified state of the thin filament following such partial extraction occurs in response to the loss of active TnC rather than the vacancy per se in the thin filament.8. The results of this study firmly indicate a direct role of TnC in the modified length dependence of cbardiac function when compared with that in skeletal muscle, and further, provide direct evidence that site 1 of the N-terminus of TnC is a key component of the length sensing instrument in the myocardium. This novel function of cardiac TnC in the length-sensing mechanism is additional to its classical role as the Ca21 switch.
Contraction of isolated, intact frog muscle fibers under increasing tonicity of the external solution was studied by adding (i) effectively impermeant sodium chloride and sucrose and (ii) permeant potassium chloride. Force of isometric contraction decreased as a function of tonicity, independent of the permeability of the solute. In contrast, cell volume changed with tonicity in impermeant solutes and was constant with potassium chloride. The results are evidence that ionic strength in the sarcoplasm directly influences the contraction mechanism. Also, the findings show that force development is unaffected by changes in fiber volume, suggesting that the force per cross-bridge is constant at different distances between the thin and myofilaments. Finally, in light of the length-force relation, the results support the idea that cross-bridges are independent force generators.
Effects of intracellular ionic strength on the isotonic contraction properties of both intact fibers and skinned fibers give insights into the cross-bridge mechanism, but presently there is fundamental disagreement in the results on the two fiber preparations. This paper, which studies the effects on contraction of varying the osmotic pressure of the bathing medium with impermeant and permeant solutes, explains the above controversy and establishes the physiological significance of the previous results on skinned fibers. Fast-twitch fibers, isolated singly from tibialis and semitendinosus muscles of frogs, were activated by a temperature-jump technique in hyperosmotic solutions with either 100 or 150 mM sucrose (impermeant), or 50 or 75 mM KCl (permeant). Intracellular ionic strength was expected to rise in these solutions from the standard value of approximately 190 to 265 mM. Cell volume and the speed of unloaded shortening both decreased with sucrose and were constant with KCl. On the other hand, isometric force decreased equally with equiosmolar addition of either solute; this is additional evidence that contractile force decreases with ionic strength and is independent of fiber volume. Therefore, for the main cross-bridges, force per bridge is constant with changes in the lateral separation between the myofilaments. The next finding, that at a fixed cell volume the contraction speed is constant with KCl, provides clear evidence in intact fibers that the intrinsic speed of shortening is insensitive to increased ionic strength. The data with KCl are in agreement with the results on skinned fibers. The results suggest that in the cross-bridge kinetics in vivo the rate-limiting step is different for force than that for shortening. On the other hand, the decrease in speed with sucrose is associated with the shrinkage in cell volume, and is explained by the possibility of an increased internal load. A major fraction of the internal load may arise from unusual interactions between the sliding filaments; these interactions are enhanced in the fibers compressed with sucrose, but this does not affect the intrinsic kinetics of the main cross-bridges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.