Protein metabolism in the rumen is the result of metabolic activity of ruminal microorganisms. The structure of the protein is a key factor in determining its susceptibility to microbial proteases and, thus, its degradability. Ruminal protein degradation is affected by pH and the predominant species of microbial population. Ruminal proteolytic activity decreases as pH decreases with high-forage dairy cattle-type rations, but not in high-concentrate beef-type rations. Accumulation of amino acid (AA) N after feeding suggests that AA uptake by rumen microorganisms could be the limiting factor of protein degradation in the rumen. In addition, there are several AA, such as Phe, Leu, and Ile, that are synthesized by rumen microorganisms with greater difficulty than other AA. The most common assessment of efficiency of microbial protein synthesis (EMPS) is determination of grams of microbial N per unit of rumen available energy, typically expressed as true organic matter or carbohydrates fermented. However, EMPS is unable to estimate the efficiency at which bacteria capture available N in the rumen. An alternative and complementary measure of microbial protein synthesis is the efficiency of N use (ENU). In contrast to EMPS, ENU is a good measurement for describing efficiency of N capture by ruminal microbes. Using EMPS and ENU, it was concluded that optimum bacterial growth in the rumen occurs when EMPS is 29 g of bacterial N/kg of fermented organic matter, and ENU is 69%, implying that bacteria would require about 1.31 x rumen-available N per unit of bacterial N. Because the distribution of N within bacterial cells changes with rate of fermentation, AA N, rather than total bacterial N should be used to express microbial protein synthesis.
Calves are born with a physically and metabolically underdeveloped rumen and initially rely on milk to meet nutrient demands for maintenance and growth. Initiation of solid feed consumption, acquisition of anaerobic microbes, establishment of rumen fermentation, expansion of rumen in volume, differentiation and growth of papillae, development of absorption and metabolic pathways, maturation of salivary apparatus and development of rumination behavior are all needed as the calf shifts from dependence on milk to solid feed. In nature and some production systems (e.g., most beef calves), young ruminants obtain nutrients from milk and fresh forages. In intensive dairying, calves are typically fed restricted amounts of milk and weaned onto starter feeds. Here we review the empirical work on the role of feeding and management during the transition from milk to solid feed in establishing the rumen ecosystem, rumen fermentation, rumen development, rumination behavior, and growth of dairy calves. In recent years, several studies have illustrated the benefits of feeding more milk and group rearing of dairy calves to take advantage of social facilitation (e.g., housing with peers or dam), and this review also examines the role of solid feed on rumen development and growth of calves fed large quantities of milk and reared under different housing situations. We conclude that the provision of high-starch and low-fiber starter feeds may negatively affect rumen development and that forage supplementation is beneficial for promoting development of the gut and rumination behavior in young calves. It is important to note that both the physical form of starter diets and their nutritional composition affect various aspects of development in calves. Further research is warranted to identify an optimal balance between physically effective fiber and readily degradable carbohydrates in starter diets to support development of a healthy gut and rumen, rumination behavior, and growth in young calves.
One hundred seventy-nine Holstein male calves [44.7 kg of body weight (BW) and 8.3 d of age] participated in a series of 3 experiments to evaluate the effect of different forage sources on performance, apparent digestibility, and feeding behavior. Animals in each study were randomly assigned to 1 of 3 different dietary treatments: control (CON) calves were fed starter feed without any forage provision (this treatment was repeated in each of the 3 experiments), and the 2 other treatments consisted of the same starter feed plus a forage source: chopped alfalfa (AH) or rye-grass hay (RH) in the first study; chopped oat hay (OH) or chopped barley straw (BS) in the second study; corn silage (CS) or triticale silage (TS) in the third study. All calves were offered 2L of milk replacer (MR) at 12.5% dry matter (DM) twice daily via a bottle until 50 d of age, and 2L of MR at 12.5% DM during the week before weaning (57 d of age). The study finished when calves were 71 d old. Starter feed, MR, and forage intakes were recorded daily and BW weekly. Calves were individually housed and bedded with wood shavings. Compared with CON, animals receiving OH, TS, and BS consumed more starter feed (0.88 vs. 1.14, 1.17, 1.06 kg/d, respectively) and had greater average daily gain (0.72 vs. 0.93, 0.88, 0.88 kg/d, respectively). Animals in treatments RH, BS, CS, and TS consumed less forage (51 g/d) than AH (120 g/d) and OH (101 g/d) calves. Apparent organic matter, DM, and neutral detergent fiber digestibilities did not differ among treatments (81.5, 81.1, and 54.4%, respectively). Apparent crude protein digestibility was greater in RH, CS, and AH treatments than in CON (80.5 vs. 76.4%, respectively). Compared with CON calves, animals in the AH treatment spent less time eating starter feed and lying, animals in AH and RH treatments spent more time ruminating, with odds ratios (OR) of 5.24 and 5.40, respectively. The AH and RH calves devoted less time to performing nonnutritive oral behaviors (OR: 0.38 and 0.34, respectively), and TS calves tended to devote less time to perform nonnutritive oral behaviors (OR: 0.21) 1h after being offered MR and solid feed. In conclusion, free-choice provision of a forage source to young calves improves feed intake and performance without impairing digestibilities of DM, organic matter, crude protein, and neutral detergent fiber, and, depending on forage source, reduces nonnutritive oral behaviors and stimulates rumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.