Fungal, host, and environmental factors affecting sexual reproduction of Phytophthora infestans in planta were studied. Intact and detached leaves were coinoculated with sporangia of various combinations of A(1) and A(2) mating-type isolates; leaves were incubated under various conditions, and oospore production was estimated microscopically within whole, clarified leaflets. Some A(1) + A(2) isolate combinations were more reproductive than others, whereas some potato genotypes better supported oospore formation than others. Tomato usually supported more oospore formation than potato. To induce oospore formation, A(1) and A(2) sporangia were usually mixed at a 1:1 ratio. Ratios of 1:19 to 19:1, however, also allowed abundant production of oospores. Optimal temperatures for sexual sporulation ranged from 8 to 15 degrees C, but oospores also were produced at 23 degrees C. Oogonia developed 5 to 6 days after sporangial coinoculation, and oospores developed after 8 to 10 days. Light had little effect on oospore formation in both tomato and potato leaves provided that initial lesions were established under photoperiodic conditions. Although A1 and A(2) sporangia usually were mixed before inoculation on leaves to obtain oospores, we found that discrete A(1) and A(2) lesions produced on opposite sides of the midvein of tomato leaves also induced oospore formation in the midvein and adjacent tissues. Oospores also formed when the two halves of the leaves were cut and separated at 3 days after sporangial coinoculation, which corresponded with the appearance of late blight lesions. The continuous supply of moisture to infected leaves was essential to oospore production. No oospores or oogonia formed in severely diseased plants kept at 50 to 80% relative humidity. Such plants did allow some oospore formation when kept continuously wet for 2 weeks in plastic boxes or tents. Detached leaves floated on water supported the highest sexual sporulation. Under optimal conditions of wetness and temperature, as many as 100 oospores per mm(2) of tissue were observed.
Tomato fruits at the mature green stage coinoculated with A1 + A2 sporangia of Phytophthora infestans, the late blight causal fungus, showed abundant oospores in the vascular tissues, pericarp, columella, and placenta. Oospores were also formed on the surface of fruits kept in moisture-saturated atmosphere. Occasionally, oospores were enclosed between the epidermal hairs of the seed coat. In a few seeds, oospores were detected inside the embryo. The data suggest that blighted tomato fruits may carry a large number of oospores, thus making them a threatening source of blight inoculum. Such fruits may also release airborne oosporic inoculum that may introduce recombinant genotypes within a growing season. Although Phytophthora infestans is seedborne in tomato, to our knowledge, this is the first report on the occurrence of oospores in tomato seeds. Whether such tomato seeds produce blighted seedlings remains to be shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.