The location and the spatial arrangement of smooth muscle cells in aortic valves have been assessed by a systematic analysis of serial semithin sections of plastic embedded porcine and human aortic leaflets, combined with an electron microscope study. The investigation showed that smooth muscle cells, either single and arranged in thin bundles, and other cell types such as myofibroblasts are constantly present in the aortic valve leaflets. In addition, it was possible to devise a model of the three dimensional, specific organization of the smooth muscle bundles which can be interpreted as an intrinsic muscle system of the leaflets. As the muscular elements might play an active role in the normal functioning of the valve, their presence should be taken into account in designing (bio)prosthetic leaflets and in the evaluation of valve pathology.
The protein ataxin-3 is responsible for Machado-Joseph disease/spinocerebellar ataxia type 3, a neurodegenerative disorder caused by the presence of an expanded polyglutamine tract. A previous investigation [Bevivino, A. E., and Loll, P. J. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 11955-11960] showed that a nonexpanded ataxin-3 (Q27) was fully soluble, whereas an expanded form (Q78) gave rise to amyloid fibrils. Here, we report investigations on three forms of ataxin-3 (i.e., human nonexpanded (Q26), moderately expanded (Q36) ataxins-3, and the murine protein (Q6)). Far-UV circular dichroism spectra at room temperature were substantially similar, with a relatively high helical content. On heating to 96 degrees C, human Q26 and murine proteins did not display large structural changes, nor did they undergo any precipitation, which highlights their amazing heat-resistance. In contrast, human Q36 ataxin-3 underwent a progressive increase in the beta-sheet and a concomitant decrease in helical content when the temperature was shifted from 37 to 80 degrees C, followed by the irreversible formation of aggregates above 80 degrees C. They were shown to consist of amyloid fibrils, as supported by both electron microscopy images and the typical spectral shift displayed by Congo red when it was added to the protein at growing temperatures. We also found that protein precipitation could be prevented by mixing the dye with Q36 ataxin-3 prior to heating, which also confirms that the precipitates do represent authentic amyloid fibrils. In contrast, other compounds structurally related to Congo red did not exert significant effects. Our observations suggest that the temperature of the observed transition is inversely related to the length of the expansion. Finally, we suggest that antiamyloidogenic compounds might be selected on the basis of their ability to block or retard human Q36 ataxin-3 precipitation on heat-treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.