The High Energy Stereoscopic System (H.E.S.S.) is an array of five Imaging Atmospheric Cherenkov Telescopes (IACTs) designed to detect cosmogenic gamma-rays with very high energies. Originally consisting of just four identical IACTs (CT1-4) with an effective mirror diameter of 12 m each, it was expanded with a fifth IACT (CT5) with a mirror diameter of 28 m in 2012. Being the largest IACT worldwide, CT5 allows to lower the energy threshold of H.E.S.S., making the array sensitive at energies where space-based detectors run out of statistics. Events can be analysed either monoscopically (i.e. using only information of CT5) or stereoscopically (requiring at least two triggered telescopes per event). To achieve a good performance, a sophisticated event reconstruction and analysis framework is indispensable. This is particularly important for H.E.S.S. since it is now the first IACT array that consists of different telescope types. An advanced reconstruction method is based on a semi-analytical model of electromagnetic particle showers in the atmosphere ("model analysis"). The properties of the primary particle are reconstructed by comparing the image recorded by each triggered telescope with the Cherenkov emission from the shower model using a log-likelihood maximisation. Due to its performance, this method has become one of the standard analysis techniques applied to CT1-4 data. Now it has been modified for use with the five-telescope array. We present the adapted model analysis and its performance in both monoscopic and stereoscopic analysis mode.
International audienceThe Cherenkov Telescope Array (CTA) consortium aims to build the next-generation ground-based very-high-energy gamma-ray observatory. The array will feature different sizes of telescopes allowing it to cover a wide gamma-ray energy band from about 20 GeV to above 100 TeV. The highest energies, above 5 TeV, will be covered by a large number of Small-Sized Telescopes (SSTs) with a field-of-view of around 9°. The Gamma-ray Cherenkov Telescope (GCT), based on Schwarzschild–Couder dual-mirror optics, is one of the three proposed SST designs. The GCT is described in this contribution and the first images of Cherenkov showers obtained using the telescope and its camera are presented. These were obtained in November 2015 in Meudon, 2 http://www.cta-observatory.org France
The High Energy Stereoscopic System (H.E.S.S.) has been searching for counterparts of Gamma Ray Bursts (GRBs) for many years. In 2012 the system was upgraded with a fifth 28 m diameter telescope (CT5) which is equipped with faster motors for rapid repointing, marking the start of the second phase of H.E.S.S. operation (H.E.S.S. II). CT5s large light collection area of 600 m 2 improves the sensitivity to low-energy gamma-rays and even extends the energy range below 100 GeV. The search for counterparts continues now in the energy range of tens of GeV to tens of TeV. A detection in this energy range would open a new window to the part of the spectrum of these highly energetic explosions which Fermi-LAT has only successfully detected in a reduced subset of events, with rather limited statistics. In the past years, H.E.S.S. has performed followup observations based on GRB detections by Swi f t-BAT and Fermi-GBM/-LAT. This Target of Opportunity observation program was carried out with a generalised Target of Opportunity Alert system. This contribution will highlight key features of the Target of Opportunity Alert system, present follow-up statistics of GRBs as well as detailed results of promising follow-up observations.
The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy γ-ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation, as well as shower detection at large impact distance, and hence large field of view (FoV), and efficient image capture in the presence of large time gradients in the shower image detected by the camera. CHEC relies on dual-mirror optics to reduce the plate-scale and make use of 6 × 6 mm 2 pixels, leading to a low-cost (∼150 ke), compact (0.5 m × 0.5 m), and light (∼45 kg) camera with 2048 pixels providing a camera FoV of ∼9 degrees. The CHEC electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) sampling incoming signals at a gigasample per second, with flexible camera-level triggering within a single backplane FPGA. CHEC is designed to observe in the γ-ray energy range of 1-300 TeV, and at impact distances up to ∼500 m. To accommodate this and provide full flexibility for later data analysis, full waveforms with 96 samples for all 2048 pixels can be read out at rates up to ∼900 Hz. The first prototype, CHEC-M, based on multi-anode photomultipliers (MAPMs) as photosensors, was commissioned and characterised in the laboratory and during two measurement campaigns on a telescope structure at the Paris Observatory in Meudon. In this paper, the results and conclusions from the laboratory and on-site testing of CHEC-M are presented. They have provided essential input on the system design and on operational and data analysis procedures for a camera of this type. A second full-camera prototype based on Silicon photomultipliers (SiPMs), addressing the drawbacks of CHEC-M identified during the first prototype phase, has already been built and is currently being commissioned and tested in the laboratory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.